Publications by authors named "Victor Parro"

The alteration of biomass into simpler molecular remnants is relevant for the search for ancient and extraterrestrial life, where identifying recurrent taphonomic pathways is crucial for the attribution of biogenicity to otherwise nonbiological molecules. This work evaluates the alteration of lipids-recalcitrant biomarkers derived from cell membranes-across a lithification gradient, from a biologically active microbial mat, through a lithifying mat, to a fully lithified microbialite. Lipids from these samples, obtained from the high-altitude, hypersaline lake of Pozo Bravo (Argentinean Andes), were analyzed at molecular and isotopic levels to reconstruct biological sources and assess preservation along a bio-to-geo transition.

View Article and Find Full Text PDF

Ancient Antarctic microbial mats harbour viable bacteria that have been exposed to extreme cold and arid conditions for hundreds of years. To delve into the molecular mechanisms underlaying their survival, we isolated 12 bacterial strains from a 1,000-year-old desiccated microbial mat from the McMurdo Ice Shelf and studied their lipid composition as a function of temperature. Six of the bacterial strains were classified as Paenisporosarcina macmurdoensis, and the other six as Arthrobacter sp.

View Article and Find Full Text PDF

Solar salterns represent unique systems with low diversity microbial communities that serve as an excellent model for studying the evolution and ecology of archaeal viruses and the interactions with their hosts. This is particularly relevant for the extremely abundant "square" archaeon Haloquadratum walsbyi, for which isolated viruses have remained elusive despite the fact that this microbe governs the salt-saturated ponds of most solar salterns worldwide. In this work, we have used cutting-edge imaging techniques, based on virusFISH, and a combination of -omic techniques, at both population and single-cell levels, to provide an in-depth characterization of the Hqr.

View Article and Find Full Text PDF

Chondritic meteorites can be appropriate substrates for the colonization of terrestrial microorganisms. However, determining whether organic compounds are intrinsic to the meteorite or come from external (terrestrial) contamination is still controversial. This research explores the molecular distribution and carbon isotopic composition of three lipid families (hydrocarbons, alkanoic acids, and alcohols) as well as DNA extracted from the interior of a CO carbonaceous chondrite named El Médano 464 (EM 464), discovered in the Atacama Desert in 2019.

View Article and Find Full Text PDF

Microorganisms are present in snow/ice of the Antarctic Plateau, but their biogeography and metabolic state under extreme local conditions are poorly understood. Here, we show the diversity and distribution of microorganisms in air (1.5 m height) and snow/ice down to 4 m depth at three distant latitudes along a 2578 km transect on the East Antarctic Plateau on board an environmentally friendly, mobile platform.

View Article and Find Full Text PDF

Background: The Andean Altiplano hosts a repertoire of high-altitude lakes with harsh conditions for life. These lakes are undergoing a process of desiccation caused by the current climate, leaving terraces exposed to extreme atmospheric conditions and serving as analogs to Martian paleolake basins. Microbiomes in Altiplano lake terraces have been poorly studied, enclosing uncultured lineages and a great opportunity to understand environmental adaptation and the limits of life on Earth.

View Article and Find Full Text PDF

Executive Summary: Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations.

View Article and Find Full Text PDF
Article Synopsis
  • Ancient peptides are important remnants of early biochemistry that still have significant roles in modern proteins and can function independently.
  • Research was conducted to identify conserved peptide sequences that could serve as biomarkers in the search for life on Mars, utilizing bioinformatics and the creation of antibodies for detection.
  • The findings revealed that these peptides can maintain their structure even after denaturation, and their detection remains effective even when bound to minerals, highlighting the potential for using these peptides as target biomarkers in astrobiology.
View Article and Find Full Text PDF

Polar lakes harbour a unique biogeochemistry that reflects the implications of climatic fluctuations against a susceptible yet extreme environment. In addition to polar, Store Saltsø (Kangerlussuaq, southwestern Greenland) is an endorheic lake with alkaline and oligotrophic waters that host a distinctive ecology adapted to live in such particular physico-chemical and environmental conditions. By exploring the sedimentary record of Store Saltsø at a molecular and compound-specific isotopic level, we were able to understand its ecology and biogeochemical evolution upon climate change.

View Article and Find Full Text PDF
Article Synopsis
  • - The ARADS project tested a robotic drill prototype designed for Mars life detection, drilling materials in the Atacama Desert, a harsh, low-life area where contamination control is essential.
  • - The team implemented a five-step decontamination protocol using safer sterilants, achieving significant reduction of biological contamination on their drill and other tools, with post-cleaning cleanliness meeting stringent aseptic standards.
  • - During testing, the hardware detected airborne contaminants and microorganisms from various Atacama environments, highlighting unexpected contamination challenges but also the efficacy of their cleaning methods.
View Article and Find Full Text PDF

Serpentinization is a well-known aqueous alteration process that may have played important roles in the origins and early evolution of life on Earth, and perhaps Mars, but there are still aspects related to biomarker distribution, partitioning, and preservation that merit further study. To assess the role that precipitation of carbonate phases in serpentinization settings may have on biomarker preservation, we search for life signs in one of the world's largest outcrops of subcontinental peridotites (Ronda, South Spain). We investigate the organic record of groundwater and associated carbonate deposits (travertines) in seven hyperalkaline springs, and reconstruct the biological activity and metabolic interactions of the serpentinization-hosted ecosystem.

View Article and Find Full Text PDF
Article Synopsis
  • * During the 2019 NASA ARADS campaign, the SOLID-LDChip was used on a rover to autonomously search for molecular biomarkers in soil samples drilled up to 80 cm deep.
  • * Results showed a rich microbial community and highlighted the chip’s effectiveness, paving the way for future missions focused on life detection in the Solar System.
View Article and Find Full Text PDF

We report on a field demonstration of a rover-based drilling mission to search for biomolecular evidence of life in the arid core of the Atacama Desert, Chile. The KREX2 rover carried the Honeybee Robotics 1 m depth The Regolith and Ice Drill for Exploration of New Terrains (TRIDENT) drill and a robotic arm with scoop that delivered subsurface fines to three flight prototype instruments: (1) The Signs of Life Detector (SOLID), a protein and biomolecule analyzer based on fluorescence sandwich microarray immunoassay; (2) the Planetary Capillary Electrophoresis System (PISCES), an amino acid analyzer based on subcritical water extraction coupled to microchip electrophoresis analysis; and (3) a Wet Chemistry Laboratory cell to measure soluble ions using ion selective electrodes and chronopotentiometry. A California-based science team selected and directed drilling and sampling of three sites separated by hundreds of meters that included a light-toned basin area showing evidence of aqueous activity surrounded by a rocky desert pavement.

View Article and Find Full Text PDF

Several mass spectrometry and spectroscopic techniques have been used in the search for molecular biomarkers on Mars. A major constraint is their capability to detect and identify large and complex compounds such as peptides or other biopolymers. Multiplex immunoassays can detect these compounds, but antibodies must be produced for a large number of sequence-dependent molecular targets.

View Article and Find Full Text PDF

Lipid molecules are organic compounds, insoluble in water, and based on carbon-carbon chains that form an integral part of biological cell membranes. As such, lipids are ubiquitous in life on Earth, which is why they are considered useful biomarkers for life detection in terrestrial environments. These molecules display effective membrane-forming properties even under geochemically hostile conditions that challenge most of microbial life, which grants lipids a universal biomarker character suitable for life detection beyond Earth, where a putative biological membrane would also be required.

View Article and Find Full Text PDF

Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan-fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as "dark microbiome", and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment.

View Article and Find Full Text PDF

Subaerial hydrothermal systems are of great interest for paleobiology and astrobiology as plausible candidate environments to support the origin of life on Earth that offer a unique and interrelated atmosphere-hydrosphere-lithosphere interface. They harbor extensive sinter deposits of high preservation potential that are promising targets in the search for traces of possible extraterrestrial life on Hesperian Mars. However, long-term quality preservation is paramount for recognizing biosignatures in old samples and there are still significant gaps in our understanding of the impact and extent of taphonomy processes on life fingerprints.

View Article and Find Full Text PDF

Microbial activity is a major contributor to the biogeochemical cycles that make up the life support system of planet Earth. A 613 m deep geomicrobiological perforation and a systematic multi-analytical characterization revealed an unexpected diversity associated with the rock matrix microbiome that operates in the subsurface of the Iberian Pyrite Belt (IPB). Members of 1 class and 16 genera were deemed the most representative microorganisms of the IPB deep subsurface and selected for a deeper analysis.

View Article and Find Full Text PDF

The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti- antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.

View Article and Find Full Text PDF

Paleobiological reconstructions based on molecular fossils may be limited by degradation processes causing differential preservation of biomolecules, the distinct taxonomic specificity of each biomolecule type, and analytical biases. Here, we combined the analysis of DNA, proteins and lipid biomarkers using 16S and 18S rRNA gene metabarcoding, metaproteomics and lipid analysis to reconstruct the taxonomic composition and metabolisms of a desiccated microbial mat from the McMurdo Ice Shelf (MIS) (Antarctica) dated ~1,000 years BP. The different lability, taxonomic resolution and analytical bias of each biomolecule type led to a distinct microbial community profile.

View Article and Find Full Text PDF

Hydrothermal systems and their deposits are primary targets in the search for fossil evidence of life beyond Earth. However, to learn how to decode fossil biomarker records in ancient hydrothermal deposits, we must first be able to interpret unambiguously modern biosignatures, their distribution patterns, and their association with physicochemical factors. Here, we investigated the molecular and isotopic profile of microbial biomarkers along a thermal gradient (from 29 to 72°C) in a hot spring (labeled Cacao) from El Tatio, a geyser field in the Chilean Andes with abundant opaline silica deposits resembling the nodular and digitate structures discovered on Mars.

View Article and Find Full Text PDF

The utilization of nanopore technologies for the detection of organic biogenic compounds has garnered significant focus in recent years. Oxford Nanopore Technologies' (ONT) MinION instrument, which can detect and sequence nucleic acids (NAs), is one such example. These technologies have much promise for unambiguous life detection but require significant development in terms of methods for extraction and preparation of NAs for biosignature detection and their feasibility for use in astrobiology-focused field missions.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding biomarkers' chemical nature and preservation is crucial for detecting life on other planets, with carbonates being particularly significant due to their association with life on Earth.
  • This study analyzed sedimentary records from Chile's Triassic-Jurassic period, utilizing a multianalytical approach combining biomarkers, metaproteomics, and a life detector chip (LDChip) to search for signs of ancient and modern life.
  • The findings suggest that using various biomarkers can improve the detection of extraterrestrial life by addressing challenges related to specificity and alterations over time, offering implications for future Mars missions.
View Article and Find Full Text PDF
Article Synopsis
  • Nunataks are ice-free peaks in polar regions that endure extreme weather, with low temperatures in winter and high radiation in summer.
  • A study on Livingston Island's nunataks revealed distinct microbial communities among bedrock, soil, and loose rocks, showing how environmental factors influence microbial life.
  • Findings suggest that microbial activity is crucial for nutrient cycling in harsh conditions, and these insights may also inform our understanding of potential life on early Mars, which had similar environments.
View Article and Find Full Text PDF

The surge of SARS-CoV-2 has challenged health systems worldwide and efficient tests to detect viral particles, as well as antibodies generated against them, are needed. Specificity, sensitivity, promptness or scalability are the main parameters to estimate the final performance, but rarely all of them match in a single test. We have developed SCOVAM, a protein microarray with several viral antigens (spike, nucleocapsid, main protease Nsp5) as capturing probes in a fluorescence immunoassay for COVID-19 serological testing.

View Article and Find Full Text PDF