98%
921
2 minutes
20
Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models. Here, we describe the generation of a collection of 19 pediatric RMS tumor organoid (tumoroid) models (success rate of 41%) comprising all major subtypes. For aggressive tumors, tumoroid models can often be established within 4-8 weeks, indicating the feasibility of personalized drug screening. Molecular, genetic, and histological characterization show that the models closely resemble the original tumors, with genetic stability over extended culture periods of up to 6 months. Importantly, drug screening reflects established sensitivities and the models can be modified by CRISPR/Cas9 with TP53 knockout in an embryonal RMS model resulting in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be used to generate organoid models, relevant for a variety of preclinical and clinical research questions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9549731 | PMC |
http://dx.doi.org/10.15252/emmm.202216001 | DOI Listing |
Signal Transduct Target Ther
September 2025
State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.
View Article and Find Full Text PDFInt J Pharm
September 2025
CINBIO, Immunology Group, Universidade de Vigo 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) remains a highly aggressive malignancy with poor therapeutic outcomes due to its desmoplastic tumor microenvironment (TME), hindering drug and activated immune cell penetration. Cancer-associated fibroblasts (CAFs) are central in supporting tumor growth and forming a protective stroma. We propose a novel dual-therapy targeting the Hippo pathway and histone deacetylation, both involved in tumor progression, resistance, and stromal interactions, to overcome PDAC therapeutic resistance.
View Article and Find Full Text PDFCell Rep Med
September 2025
Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway. Electronic address:
Accurate identification of tumor-specific markers is vital for developing chimeric antigen receptor (CAR)-based therapies. While cell surface antigens are seldom cancer-restricted, their post-translational modifications (PTMs), particularly aberrant carbohydrate structures, offer attractive alternatives. Among these, the sialyl-Tn (STn) antigen stands out for its prevalent presence in various epithelial tumors.
View Article and Find Full Text PDFJ Clin Invest
September 2025
State Key Laboratory of Molecular Oncology, National Cancer Center/National, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC.
View Article and Find Full Text PDFJ Immunother Cancer
September 2025
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
Background: Patients with acute myeloid leukemia (AML) are often older, which brings challenges of endurance and persistent efficacy of autologous chimeric antigen receptor (CAR)-T cell therapies. Allogenic CAR-natural killer (NK) cell therapies may offer reduced toxicities and enhanced anti-leukemic potential against AML. CD33 CAR-NK cells have been investigated for AML therapy.
View Article and Find Full Text PDF