98%
921
2 minutes
20
Purpose: To rapidly image and localize the focus in MR-guided focused ultrasound (FUS) while maintaining a low ultrasound duty cycle to minimize tissue effects.
Methods: MR-acoustic radiation force imaging (ARFI) is key to targeting FUS procedures such as neuromodulation, and works by encoding ultrasound-induced displacements into the phase of MR images. However, it can require long scan times to cover a volume of tissue, especially when minimizing the FUS dose during targeting is paramount. To simultaneously minimize scan time and the FUS duty cycle, a 2-min three-dimensional (3D) reduced-FOV spin echo ARFI scan with two-dimensional undersampling was implemented at 3T with a FUS duty cycle of 0.85%. The 3D k-space sampling scheme incorporated uniform undersampling in one phase-encoded axis and partial Fourier (PF) sampling in the other. The scan interleaved FUS-on and FUS-off data collection to improve displacement map quality via a joint low-rank image reconstruction. Experiments in agarose and graphite phantoms and living macaque brains for neuromodulation and blood-brain barrier opening studied the effects of the sampling and reconstruction strategy on the acquisition, and evaluated its repeatability and accuracy.
Results: In the phantom, the distances between displacement centroids of 10 prospective reconstructions and a fully sampled reference were below 1 mm. In in vivo brain, the distances between centroids ranged from 1.3 to 2.1 mm. Results in phantom and in vivo brain both showed that the proposed method can recover the FUS focus compared to slower fully sampled scans.
Conclusion: The proposed 3D MR-ARFI reduced-FOV method enables rapid imaging of the FUS focus while maintaining a low FUS duty cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529839 | PMC |
http://dx.doi.org/10.1002/mrm.29403 | DOI Listing |
J Acoust Soc Am
September 2025
Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA.
Echolocating bats provide vital ecosystem services and can be monitored effectively using passive acoustic monitoring (PAM) techniques. Duty-cycle subsampling is widely used to collect PAM data at regular ON/OFF cycles to circumvent battery and storage capacity constraints for long-term monitoring. However, the impact of duty-cycle subsampling and potential detector errors on estimating bat activity has not been systematically investigated for bats.
View Article and Find Full Text PDFCancer Pathog Ther
September 2025
Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, United States.
Background: Stereotactic body radiotherapy (SBRT) is an effective treatment for early-stage non-small cell lung cancer. However, patient breathing can affect treatment accuracy. Therefore, this study aimed to develop a bi-polar (BP) gated motion management strategy for SBRT and evaluate its feasibility geometrically and dosimetrically.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
September 2025
Ryazan State University named for S.A. Yesenin, Ryazan, Russia.
The ion-optical properties of the second stability region () formed by the square wave shape potential with a duty cycle of 50% are studied as applied to the operation of a linear ion trap. The stability diagram is presented in detail, the stability parameters and , which determine the spectrum of ion oscillations, are calculated; the pseudopotential well-depth for this zone is given. The LIT acceptances for sinusoidal and rectangular wave forms are shown for comparison.
View Article and Find Full Text PDFJ Biomed Phys Eng
August 2025
School of Information Science and Engineering, Changsha Normal University, Changsha 410100, China.
Background: High-Intensity Focused Ultrasound (HIFU) represents a non-invasive treatment approach that utilizes non-ionizing radiation. This technique has found clinical utility in managing both benign and malignant solid tumors.
Objective: This study aimed to investigate the variations in HIFU frequency and duty cycle influence thermal lesion formation in tissue to identify the optimal parameter combination for HIFU therapy in multi-layered tissues.
eNeuro
September 2025
NMD Laboratory at the Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA.
Understanding the roles of astrocytic calcium signaling in multiple brain regulatory mechanisms including metabolism, blood flow, neuromodulation and neuroinflammation has remained one of the enduring challenges in glial biology. To delineate astrocytic contribution from concurrent neuronal activity, it is vital to establish robust control and manipulate astrocytes using a technique like optogenetics due to its high cellular specificity and temporal resolution. The lack of an experimental paradigm to induce controlled calcium signaling in astrocytes has hindered progress in the field.
View Article and Find Full Text PDF