A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Simulation Study on the Effect of HIFU Irradiation Frequency and Duty Cycle Combination Parameter Optimization on Thermal Lesion of Biological Tissue. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: High-Intensity Focused Ultrasound (HIFU) represents a non-invasive treatment approach that utilizes non-ionizing radiation. This technique has found clinical utility in managing both benign and malignant solid tumors.

Objective: This study aimed to investigate the variations in HIFU frequency and duty cycle influence thermal lesion formation in tissue to identify the optimal parameter combination for HIFU therapy in multi-layered tissues.

Material And Methods: In this theoretical framework, a model of HIFU application to multi-layer biological tissues was created. Four unique HIFU parameter sets, defined by combining high or low frequency with high or low duty cycle, were comprehensively examined. The study analyzed how these settings influenced temperature distributions and lesion area in the layered tissue to ascertain the ideal combination of frequency and duty cycle parameters.

Results: Simulation results revealed that the former parameter set (high frequency, low duty cycle) was optimal for treating smaller, superficial tumours, whereas the latter combination (low frequency, high duty cycle) proved effective for deeper-seated lesions. Regarding thermal dose metrics, the high-energy setting (high frequency, high duty cycle) generated the most extensive lesion area and highest peak temperature, in contrast to the low-energy configuration (low frequency, low duty cycle), which produced the smallest coagulation zone and lowest focal temperature.

Conclusion: The study demonstrates that optimal HIFU therapeutic outcomes require frequency-duty cycle combinations tailored to tumour characteristics, with high-frequency/low-duty cycle for shallow small tumours and low-frequency/high-duty cycle for deep lesions, providing a framework for precision parameter selection in clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12402415PMC
http://dx.doi.org/10.31661/jbpe.v0i0.2412-1864DOI Listing

Publication Analysis

Top Keywords

duty cycle
32
frequency duty
12
low frequency
12
frequency high
12
low duty
12
cycle
11
frequency
8
duty
8
thermal lesion
8
high low
8

Similar Publications