98%
921
2 minutes
20
Objectives: To evaluate the performance of an engineered machine learning algorithm to identify kidney stones and measure stone characteristics without the need for human input.
Methods: We performed a cross-sectional study of 94 children and adults who had kidney stones identified on non-contrast CT. A previously developed deep learning algorithm was trained to segment renal anatomy and kidney stones and to measure stone features. The performance and speed of the algorithm to measure renal anatomy and kidney stone features were compared to the current gold standard of human measurement performed by 3 independent reviewers.
Results: The algorithm was 100% sensitive and 100% specific in detecting individual kidney stones. The mean stone volume segmented by the algorithm was smaller than that of human reviewers and had moderate overlap (Dice score: 0.66). There was substantial variation between human reviewers in total segmented stone volume (Jaccard score: 0.17) and volume of the single largest stone (Jaccard score: 0.33). Stone segmentations performed by the machine learning algorithm more precisely approximated stone borders than those performed by human reviewers on qualitative assessment.
Conclusion: An engineered machine learning algorithm can identify and characterize stones more accurately and reliably than humans, which has the potential to improve the precision and efficiency of assessing kidney stone burden.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936246 | PMC |
http://dx.doi.org/10.1016/j.urology.2022.07.029 | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Nephrol
September 2025
School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFOdontology
September 2025
Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.