Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatocyte growth factor/scatter factor (HGF/SF) and its cognate receptor MET play several essential roles in embryogenesis and regeneration in postnatal life of epithelial organs such as the liver, kidney, lung, and pancreas, prompting a strong interest in harnessing HGF/SF-MET signalling for regeneration of epithelial organs after acute or chronic damage. The limited stability and tissue diffusion of native HGF/SF, however, which reflect the tightly controlled, local mechanism of action of the morphogen, have led to a major search of HGF/SF mimics for therapy. In this work, we describe the rational design, production, and characterization of K1K1, a novel minimal MET agonist consisting of two copies of the kringle 1 domain of HGF/SF in tandem orientation. K1K1 is highly stable and displays biological activities equivalent or superior to native HGF/SF in a variety of in vitro assay systems and in a mouse model of liver disease. These data suggest that this engineered ligand may find wide applications in acute and chronic diseases of the liver and other epithelial organs dependent of MET activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348577PMC
http://dx.doi.org/10.26508/lsa.202201424DOI Listing

Publication Analysis

Top Keywords

epithelial organs
12
kringle domain
8
hepatocyte growth
8
growth factor/scatter
8
factor/scatter factor
8
acute chronic
8
native hgf/sf
8
hgf/sf
5
dimerization kringle
4
domain hepatocyte
4

Similar Publications

Organ-on-chip (OOC) technologies, also called microphysiological systems (MPS), offer dynamic microenvironments that improve upon static culture systems, yet widespread adoption has been hindered by fabrication complexity, reliance on polydimethylsiloxane (PDMS), and limited modularity. Here, a modular MPS platform is presented, designed for ease of use, reproducibility, and broad applicability. The system comprises layered elastomeric inserts for dual monolayer cell culture, which is clamped within a reusable acrylic cassette for perfusion studies.

View Article and Find Full Text PDF

Epithelia are specialized and selective tissue barriers that separate the organism's interior from the external environment. Among adult tissues, the gut epithelium must withstand microbial and biochemical insults but also mechanical stresses imposed by luminal contents and gastrointestinal motility. In addition, the continuous renewal of the intestinal epithelium creates tension that must be withstood by cell-cell junctions and the actomyosin cytoskeleton to preserve barrier integrity.

View Article and Find Full Text PDF

Evaluation of the C protein of BVDV as a vaccine candidate: Immunoprotective studies in mice.

Vet Microbiol

September 2025

College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, PR China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Techno

Bovine Viral Diarrhea Virus (BVDV) is a major pathogen associated with calf diarrhea and reproductive disorders in cattle. This study evaluated the immune-protective potential of a subunit vaccine based on the capsid C protein of the BVDV HNL-1 strain. In mice model, the C protein subunit vaccine exhibits a favorable safety and elicits robust immune-protective efficacy comparable to commercial inactivated vaccines.

View Article and Find Full Text PDF

Multicellular organisms generate organizational complexity through morphogenesis, in which mechanical forces orchestrate the movements and deformations of cells and tissues, while chemical signals regulate the molecular events that generate and coordinate these forces. One common denominator that is critical both for mechanics and biochemistry is material property. Material properties define how materials deform or rearrange under applied forces, and how rapidly molecules interact or spread in space and time.

View Article and Find Full Text PDF

Silencing CD151 gene in donor triple-negative breast cancer cells attenuates exosome-driven functions of recipient cells.

Exp Cell Res

September 2025

Cancer Biology Laboratory, Dept of Life Sciences, GITAM School of Sciences, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India. Electronic address:

CD151 is a tetraspanin, abnormally expressed in triple negative breast cancer (TNBC). It is a prominent component of exosomes, facilitating the secretion of proteins that promote metastasis and drug resistance. We have previously demonstrated that silencing the CD151 gene reduces metastasis in TNBC.

View Article and Find Full Text PDF