Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413246PMC
http://dx.doi.org/10.1021/acs.chemrev.1c00396DOI Listing

Publication Analysis

Top Keywords

electrochemical methods
20
water purification
12
energy conversion
12
methods water
8
purification ion
8
ion separations
8
separations energy
8
electrochemical
7
methods
7
water
6

Similar Publications

The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.

View Article and Find Full Text PDF

Alternating current (AC) electrolysis offers a promising strategy for modulating redox states in metal-catalyzed reactions, yet its mechanistic basis remains poorly understood. Here, we uncover how AC frequency synchronizes with key steps in a Ni-catalyzed cross-coupling cycle to control product selectivity between C-N and C-C coupling. We show that optimal C-N selectivity arises from minimizing the exposure of a key intermediate, Ni(Ar)Br, to reducing conditions that otherwise promote off-cycle Ni species and undesired C-C homocoupling.

View Article and Find Full Text PDF

A series of Ni-MOF materials were synthesized by a one-step solvothermal method under different reaction conditions, including metal source, organic ligand, reaction time and reaction temperature. The results demonstrated that the Ni-MOFs synthesized with Ni(NO3)2•6H2O as the metal source had higher crystallinity and a more uniform crystalline structure than those with NiCl2•6H2O. Different organic ligands led to the formation of Ni-MOFs in various morphologies.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) remain a leading cause of death, particularly in developing countries, where their incidence continues to rise. Traditional CVD diagnostic methods are often time-consuming and inconvenient, necessitating more efficient alternatives. Rapid and accurate measurement of cardiac biomarkers released into body fluids is critical for early detection, timely intervention, and improved patient outcomes.

View Article and Find Full Text PDF

To overcome the potential issue of active site blockage by surfactants in colloidal synthesis, alternative synthetic approaches must be explored. In this study, we investigated both solvent-free and colloidal thermolysis routes to synthesize nickel sulfides (NiS and NiS) using sulfur-based Ni complexes, [Ni(SCO(CH))] (Ni-Xan) and [Ni(SCN(CH))] (Ni-DTC) as precursors. The solvent-free decomposition of these complexes produced ligand-free NiS and NiS in the absence or presence of triphenylphosphine (TPP), respectively.

View Article and Find Full Text PDF