Differential Expression of miRNAs and Their Predicted Target Pathways in Cochlear Nucleus Following Chronic Noise Exposure in Rats.

Cells

Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, CHA University, Seongnam 13496, Korea.

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Several recent preclinical studies have reported that dynamic changes in miRNA expression contribute to hearing function. This study aims to investigate miRNA expression changes in the cochlear nuclei (CN) of rats following chronic noise exposure. Eight-week-old rats ( = 14) were exposed to noise for 4 weeks. The control rats ( = 14) were raised under identical conditions without noise. Two months after noise exposure, the auditory brainstem response (ABR) was examined, and the cochlea and CN were harvested. In the CN, the expression levels of arc, neurocan, and brevican were measured ( = 6 per group). Furthermore, the expression levels of miRNAs and their predicted target genes were measured in the CN ( = 8 per group). ABR thresholds were elevated after 4 weeks of noise exposure, which were maintained for 3 months. In CN, the protein expression of arc and brevican was higher in the noise-exposed group than in the control group (0.95 [standard deviation (SD) = 0.53] vs. 3.19 [SD = 1.00], < 0.001 for arc and 1.02 [SD = 0.10] vs. 1.66 [SD = 0.24], < 0.001 for brevican). The noise-exposed rats exhibited lower expression levels of miR-758-5p, miR-15b-5p, miR-212-3p, miR-199a-5p, and miR-134-3p than the control rats (all < 0.001). The AMPK signaling pathway was predicted to be regulated by these miRNAs. The predicted target genes AKT3, SIRT1, and PRKAA1 were highly expressed in noise-exposed rats. In CN of noise-exposed rats, the miRNAs of miR-758-5p, miR-15b-5p, miR-212-3p, miR-199a-5p, and miR-134-3p were reduced and related to AMPK signaling including AKT3 and SIRT1 expression. These modulation of signaling pathways could mediate the increased expression of brevican in the CN of noise-exposed rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332242PMC
http://dx.doi.org/10.3390/cells11152266DOI Listing

Publication Analysis

Top Keywords

noise exposure
16
noise-exposed rats
16
mirnas predicted
12
predicted target
12
expression levels
12
rats
9
chronic noise
8
expression
8
mirna expression
8
control rats
8

Similar Publications

Background: Stroke, frequently associated with carotid artery disease, is evaluated using carotid computed tomography angiography (CTA). Dual-energy CTA (DE-CTA) enhances imaging quality but presents challenges in maintaining high image clarity with low-dose scans.

Objectives: To compare the image quality of 50 keV virtual monoenergetic images (VMI) generated using Deep Learning Image Reconstruction (DLIR) and Adaptive Statistical Iterative Reconstruction-V (ASIR-V) algorithms under a triple-low scanning protocol in carotid CTA.

View Article and Find Full Text PDF

Background: Effective communication and collaboration among clinical and nonclinical staff are critical to the health and safety of the staff, for optimal team performance and for safe patient care. While respiratory protective equipment are routine key strategies to protect healthcare workers from exposure to select respiratory pathogens, they have been demonstrated to disrupt speech intelligibility. The COVID-19 pandemic escalated the need for and utilization of respiratory protection in all healthcare settings.

View Article and Find Full Text PDF

Limited research has examined the relationships of co-exposure to air pollutants, temperature, and road traffic noise with chronic kidney disease (CKD) incidence and the interaction between PM and temperature. To address this gap, the present study explored these associations and interactions in Taiwan. A cohort of 3,041 older individuals (aged ≥55 years) was recruited in 2009 and followed until 2019.

View Article and Find Full Text PDF

Animal studies indicating an association of exposure to extremely low frequency electromagnetic fields (ELF-EMFs) and noise with reproductive dysfunctions. Nonetheless, the potential impacts of exposure to these hazardous agents on the human prostate gland remain unidentified. To assess the relationship between co-exposure to ELF-EMF and noise and the levels of prostate-specific antigen (PSA), a longitudinal study was conducted over eight years among workers at a thermal power station from 2016 to 2024.

View Article and Find Full Text PDF