Kidney damage induced by repeated fine particulate matter exposure: Effects of different components.

Sci Total Environ

Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung 833, Taiwan, ROC; Chang Gung University College of Medicine, 259, Wenhua 1(st) Road, Guishan District, Taoyuan City 333, Taiwan, ROC. Electronic address:

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Exposure to fine particulate matter with an aerodynamic diameter of ≤2.5 μm (PM) is associated with adverse health effects. This study aimed to evaluate the toxic effects of the constituents of PM on mouse kidneys.

Methods: We collected PM near an industrial complex located in southern Kaohsiung, Taiwan, that was divided into water extract and insoluble particles. Male C57BL/6 mice were divided into five groups: control, low- and high-dose insoluble particle exposure, and low- and high-dose water extract exposure. Biochemical analysis, Western blot analysis, histological examination, and immunohistochemistry were performed to evaluate the impact of PM constituents on mice kidneys.

Results: PM was collected from January 1, 2021, to February 8, 2021, from an industrial complex in Kaohsiung, Taiwan. Metallic element analysis showed that Pb, Ni, V, and Ti were non-essential metals with enrichment factors >10. Polycyclic aromatic hydrocarbon and nitrate polycyclic aromatic hydrocarbon analyses revealed that the toxic equivalents are, in the order, benzo(a)pyrene (BaP), indeno(1,2,3-cd) pyrene (IP), dibenzo(a,h)anthracene (DBA), and benzo(b)fluoranthene (BbF), which are potential carcinogens. Both water extract and insoluble particle exposure induced inflammatory cytokine upregulation, inflammatory cell infiltration, antioxidant activity downregulation, and elevation of kidney injury molecule 1 (KIM-1) level in mouse kidneys. A dose-dependent effect of PM water extract and insoluble particle exposure on angiotensin converter enzyme 2 downregulation in mouse kidneys was observed.

Conclusion: We found that water-soluble extract and insoluble particles of PM could induce oxidative stress and inflammatory reactions, influence the regulation of renin-angiotensin system (RAS), and lead to kidney injury marker level elevation in mouse kidneys. The lowest-observed-adverse-effect level for renal toxicity in mice was 40 μg water-soluble extract/insoluble particle inhalation per week, which was approximately equal to the ambient PM concentration of 44 μg/m for mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157528DOI Listing

Publication Analysis

Top Keywords

water extract
16
extract insoluble
16
insoluble particle
12
particle exposure
12
mouse kidneys
12
fine particulate
8
particulate matter
8
industrial complex
8
kaohsiung taiwan
8
insoluble particles
8

Similar Publications

Optimization and application of pretreatment for the analysis of typical per- and polyfluoroalkyl substances (PFAAs) in drinking water: a systematic evaluation of filter membranes and SPE Sorbents.

Anal Sci

September 2025

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China.

The accurate detection of trace perfluoroalkyl acids (PFAAs) in drinking water remains challenging due to nonspecific adsorption losses during pretreatment. This study systematically evaluated the adsorption behaviors of 11 PFAAs across five filtration membranes and four solid-phase extraction (SPE) sorbents to establish an optimized analytical protocol. Results demonstrated that glass fiber (GL) filters minimized PFAAs retention (94.

View Article and Find Full Text PDF

The effect of mixed potable and wastewater (WW) irrigation on leafy vegetables cultivated in southern Tehran, Iran, was investigated in 2022. Eight species-spinach (Spinacia oleracea), scallion (Allium fistulosum), radish (Raphanus sativus), cress (Lepidium sativum), basil (Ocimum basilicum), purslane (Portulaca oleracea), cilantro (Coriandrum sativum), and savory (Satureja hortensis)-were grown in calcareous loamy soil under greenhouse conditions using five irrigation regimes (0%, 25%, 50%, 75%, and 100% WW) applied every 2 days. Soil salinity, DTPA-extractable Co, Cu, Ni, and Zn, plant growth traits, and health risk indices-transfer factor (TF), bioaccumulation factor (BAF), average daily dietary intake (ADD), hazard quotient (HQ), and cancer risk (CR)-were determined for children and adults.

View Article and Find Full Text PDF

Introduction: Neurocysticercosis (NCC) is a parasitic infection of the central nervous system caused by the ingestion of Taenia solium eggs, typically through the consumption of undercooked pork or contaminated water. Recognized as a leading preventable cause of epilepsy, NCC poses a significant public health challenge, particularly in developing nations such as India. This retrospective observational study aimed to investigate the clinical manifestations, radiological characteristics, diagnostic approaches, therapeutic interventions, and follow-up outcomes of pediatric patients diagnosed with NCC.

View Article and Find Full Text PDF

Ultrasonic-assisted three-phase partitioning with deep eutectic solvents for extraction of Nostoc commune Vauch polysaccharides and their anti-ulcerative colitis activity.

Int J Biol Macromol

September 2025

The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.

This study explores the extraction of polysaccharides from Nostoc commune Vauch. using ultrasonic-assisted three-phase partitioning with deep eutectic solvents (UA-TPP-DES). Response surface methodology was used to determine the optimized UA-TPP-DES conditions as follows: a 1: 2 M ratio of lauric acid to terpineol, 30 min of ultrasonication at 60 °C with 100 W power, 20 % moisture content, 20 % w/w (NH)SO concentration, and a 2: 1 top-to-bottom phase volume ratio.

View Article and Find Full Text PDF

Identifying the sources of sedimentary organic matter (OM) is essential for understanding pollution dynamics and guiding effective management in estuarine environments. This study proposes a novel and transferable source tracking framework that integrates Fourier transform infrared (FTIR) and fluorescence spectroscopy with a principal component analysis-absolute principal component score-multiple linear regression (PCA-APCS-MLR) receptor model to apportion OM sources in surface sediments across four South Korean estuaries with contrasting land use. Five new infrared-based indices (IRIs), developed from diagnostic FTIR absorbance features of water-extractable organic matter (WEOM), were designed to capture source-specific functional group compositions linked to terrestrial, synthetic, and petroleum-derived OM.

View Article and Find Full Text PDF