98%
921
2 minutes
20
Genetic studies have identified associations of carnosinase 1 (CN1) polymorphisms with diabetic kidney disease (DKD). However, CN1 levels and activities have not been assessed as diagnostic or prognostic markers of DKD in cohorts of patients with type 2 diabetes (T2D). We established high-throughput, automated CN1 activity and concentration assays using robotic systems. Using these methods, we determined baseline serum CN1 levels and activity in a T2D cohort with 970 patients with no or only mild renal impairment. The patients were followed for a mean of 1.2 years. Baseline serum CN1 concentration and activity were assessed as predictors of renal function impairment and incident albuminuria during follow up. CN1 concentration was significantly associated with age, gender and estimated glomerular filtration rate (eGFR) at baseline. CN1 activity was significantly associated with glycated hemoglobin A1c (HbA1c) and eGFR. Serum CN1 at baseline was associated with eGFR decline and predicted renal function impairment and incident albuminuria during the follow-up. Baseline serum CN1 levels were associated with presence and progression of renal function decline in a cohort of T2D patients. Confirmation in larger cohorts with longer follow-up observation periods will be required to fully establish CN1 as a biomarker of DKD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304884 | PMC |
http://dx.doi.org/10.3389/fphar.2022.899057 | DOI Listing |
Int Urol Nephrol
September 2025
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
Purpose: Living donor kidney transplantation is a critical strategy to address the growing burden of end-stage kidney disease (ESKD) in Malaysia. Whilst living donation is generally safe, concerns remain regarding long-term donor outcomes. This study aimed to evaluate renal function and morbidity changes in living kidney donors 1 year post-donation, and to identify predictors of impaired kidney function.
View Article and Find Full Text PDFPediatr Nephrol
September 2025
Pediatric Nephrology Department, Biobizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.
Copeptin, a stable glycopeptide derived from the precursor of arginine vasopressin (AVP), has emerged as a valuable surrogate biomarker for AVP due to its stability and ease of measurement. This narrative review explores the physiological role of copeptin, its utility as a diagnostic and prognostic biomarker in different kidney diseases, and its clinical relevance in renal tubular disorders. The clinical application of copeptin as a diagnostic biomarker is best established in the differential diagnosis of polyuria-polydipsia syndrome (PPS), distinguishing nephrogenic diabetes insipidus (NDI) from central diabetes insipidus (CDI) and primary polydipsia (PP).
View Article and Find Full Text PDFRheumatol Int
September 2025
Clinical Department of Rheumatology, Immunology and Internal Medicine, University Hospital in Kraków, Jakubowskiego 2, Kraków, 30-688, Poland.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by complex disturbances in both innate and adaptive immune responses, often leading to multi-organ involvement. One of the key features of SLE pathogenesis is endothelial dysfunction, which contributes to immune cell infiltration and vascular inflammation. In this context, adhesion molecules such as platelet endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) may reflect the degree of endothelial activation.
View Article and Find Full Text PDFBackground: Malaria is one of the most infectious diseases, and electrolyte imbalance and mineral disturbances are common clinical manifestations. This study aimed to explore the effect of malaria on biochemical parameters in Sudanese patients with severe falciparum malaria.
Methods: A case-control study was conducted in the clinical laboratory of the Kosti Teaching Hospital between August 2022 and January 2023.
NMR Biomed
October 2025
High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.
View Article and Find Full Text PDF