98%
921
2 minutes
20
Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of motor neurons in the motor cortex, brainstem, and spinal cord. Although ALS is considered a motor neuron disorder, neuroinflammation also plays an important role. Recent evidence in ALS disease models indicates activation of the inflammasome and subsequent initiation of pyroptosis, an inflammatory type of cell death. In this study, we determined the expression and distribution of the inflammasome and pyroptosis effector proteins in post-mortem brain and spinal cord from ALS patients (n = 25) and controls (n = 19), as well as in symptomatic and asymptomatic TDP-43 transgenic and wild-type mice. Furthermore, we evaluated its correlation with the presence of TDP-43 pathological proteins and neuronal loss. Expression of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, pyroptosis effector protein cleaved Gasdermin D (GSDMD), and IL-18 was detected in microglia in human ALS motor cortex and spinal cord, indicative of canonical inflammasome-triggered pyroptosis activation. The number of cleaved GSDMD-positive precentral white matter microglia was increased compared to controls and correlated with a decreased neuronal density in human ALS motor cortex. Neither of this was observed in the spinal cord. Similar results were obtained in TDP-43 mice, where microglial pyroptosis activation was significantly increased in the motor cortex upon symptom onset, and correlated with neuronal loss. There was no significant correlation with the presence of TDP-43 pathological proteins both in human and mouse tissue. Our findings emphasize the importance of microglial NLRP3 inflammasome-mediated pyroptosis activation for neuronal degeneration in ALS and pave the way for new therapeutic strategies counteracting motor neuron degeneration in ALS by inhibiting microglial inflammasome/pyroptosis activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00401-022-02466-9 | DOI Listing |
Commun Biol
September 2025
Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.
View Article and Find Full Text PDFJ Neural Eng
September 2025
Eindhoven University of Technology, De Rondom 70, Eindhoven, 5612 AP, NETHERLANDS.
Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.
View Article and Find Full Text PDFCereb Cortex
August 2025
Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.
Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Department of Neurosurgery, Paracelsus Medical University, Breslauer Straße 201, 90471, Nuremberg, Bavaria, Germany.
Purpose: Resection of glioblastomas infiltrating the motor cortex and corticospinal tract (CST) is often linked to increased perioperative morbidity. Navigated transcranial magnetic stimulation (nTMS) motor mapping has been advocated to increase patient safety in these cases. The additional impact of patient frailty on overall outcome after resection of cases with increased risk for postoperative motor deficits as identified with nTMS needs to be investigated.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDF