98%
921
2 minutes
20
When C leaves are exposed to low light, the CO concentration in the bundle sheath (BS) cells decreases, causing an increase in photorespiration relative to assimilation, and a consequent reduction in biochemical efficiency. These effects can be mitigated by complex acclimation syndromes, which are of primary importance for crop productivity but are not well studied. We unveil an acclimation strategy involving the coordination of electron transport processes. First, we characterize the anatomy, gas exchange and electron transport of C Setaria viridis grown under low light. Through a purposely developed biochemical model, we resolve the photon fluxes and reaction rates to explain how the concerted acclimation strategies sustain photosynthetic efficiency. Our results show that a smaller BS in low-light-grown plants limited leakiness (the ratio of CO leak rate out of the BS over the rate of supply via C acid decarboxylation) but sacrificed light harvesting and ATP production. To counter ATP shortage and maintain high assimilation rates, plants facilitated light penetration through the mesophyll and upregulated cyclic electron flow in the BS. This shade tolerance mechanism, based on the optimization of light reactions, is possibly more efficient than the known mechanisms involving the rearrangement of carbon metabolism, and could potentially lead to innovative strategies for crop improvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9545969 | PMC |
http://dx.doi.org/10.1111/tpj.15915 | DOI Listing |
Nano Lett
September 2025
Department of Physics, Columbia University, New York, New York 10027, United States.
Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.
View Article and Find Full Text PDFChembiochem
September 2025
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str. 5/2, 220084, Minsk, Belarus.
The terminal deoxynucleotidyl transferase is a unique polymerase that incorporates nucleotides at the 3'-terminus of single-stranded DNA primers in a template-independent manner. This biological function propels the development of numerous biomedical and bioengineering applications. However, the extensive use of TdT is constrained by its low expression levels in E.
View Article and Find Full Text PDFPhotochem Photobiol
September 2025
Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, Brazil.
The study investigated the impact of different treatments on recovery from calcaneal tendinopathy in rats, focusing on the gastrocnemius muscle. Tendinopathy is caused by repetitive overload, leading to structural collagen damage and chronic muscle inflammation. Three therapeutic approaches were compared: photobiomodulation (PBM), advanced platelet-rich fibrin (A-PRF) injection, and a combination of the two.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institution Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), Madrid, 28049, Spain.
Achieving magnetic ordering in low-dimensional materials remains a key objective in the field of magnetism. Herein, coordination chemistry emerges as a powerful discipline to promote the stabilization of magnetism at the nanoscale. We present a thorough study of exemplary two-dimensional metal-organic nanoarchitectures synthesized on a Au(111) substrate, which are rationalized by using surface-science techniques and theoretical calculations.
View Article and Find Full Text PDFAdv Mater
September 2025
Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Spain.
Formamidinium lead iodide perovskite compositions have a low open circuit voltage deficit and thus a higher power conversion efficiency (PCE) potential. However, their low bandgap makes it difficult to achieve a semitransparent perovskite solar cell (ST-PSC) with a high average visible transmittance (AVT) and thus, a high light utilization efficiency (LUE). Attaining a high AVT in such low bandgap perovskite‑based semitransparent solar cells requires the perovskite layer to be very thin (thickness < ≈100 nm) and the rear electrode to be made of a transparent conductive oxide.
View Article and Find Full Text PDF