Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cellulomonas flavigena is a saprotrophic bacterium that encodes, within its genome, four predicted lytic polysaccharide monooxygenases (LPMOs) from Auxiliary Activity family 10 (AA10). We showed previously that three of these cleave the plant polysaccharide cellulose by oxidation at carbon-1 (J. Li, L. Solhi, E.D. Goddard-Borger, Y. Mattieu et al., Biotechnol Biofuels 14:29, 2021, https://doi.org/10.1186/s13068-020-01860-3). Here, we present the biochemical characterization of the fourth C. flavigena AA10 member (LPMO10D) as a chitin-active LPMO. Both the full-length LPMO10D-Carbohydrate-Binding Module family 2 (CBM2) and catalytic module-only proteins were produced in Escherichia coli using the native general secretory (Sec) signal peptide. To quantify chitinolytic activity, we developed a high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method as an alternative to the established hydrophilic interaction liquid ion chromatography coupled with UV detection (HILIC-UV) method for separation and detection of released oxidized chito-oligosaccharides. Using this method, we demonstrated that LPMO10D is strictly active on the β-allomorph of chitin, with optimal activity at pH 5 to 6 and a preference for ascorbic acid as the reducing agent. We also demonstrated the importance of the CBM2 member for both mediating enzyme localization to substrates and prolonging LPMO activity. Together with previous work, the present study defines the distinct substrate specificities of the suite of C. flavigena AA10 members. Notably, a cross-genome survey of AA10 members indicated that chitinolytic LPMOs are, in fact, rare among bacteria. Species from the genus have a long history of study due to their roles in biomass recycling in nature and corresponding potential as sources of enzymes for biotechnological applications. Although species are more commonly associated with the cleavage and utilization of plant cell wall polysaccharides, here, we show that C. flavigena produces a unique lytic polysaccharide monooxygenase with activity on β-chitin, which is found, for example, in arthropods. The limited distribution of orthologous chitinolytic LPMOs suggests adaptation of individual cellulomonads to specific nutrient niches present in soil ecosystems. This research provides new insight into the biochemical specificity of LPMOs in species and related bacteria, and it raises new questions about the physiological function of these enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361826PMC
http://dx.doi.org/10.1128/aem.00968-22DOI Listing

Publication Analysis

Top Keywords

lytic polysaccharide
12
polysaccharide monooxygenases
8
flavigena aa10
8
aa10 members
8
chitinolytic lpmos
8
activity
5
chitin-active lytic
4
polysaccharide
4
monooxygenases rare
4
species
4

Similar Publications

Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.

View Article and Find Full Text PDF

Unlabelled: Microbial deconstruction of plant polysaccharides is important for environmental nutrient cycling, and bacteria proficient at this process have extensive suites of polysaccharide-specific enzymes. In the gram-negative saprophyte , genome annotation suggests that 17 genes are predicted to encode Carbohydrate-Active enZymes (CAZymes) with roles in cellulose degradation; however, previous work suggested that only a subset of these genes is essential. Building upon that work, here, we identify the required and minimally sufficient set of enzymes for complete degradation of cellulose using a combination of transcriptomics, gene deletion analysis, heterologous expression studies, and metabolite analysis.

View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs) represent copper-dependent enzymes pivotal in breaking down resilient polysaccharides like cellulose and chitin by means of oxidation, creating more accessible sites for glycoside hydrolases. To elevate the conversion efficiency of chitin, an AA10 LPMO was identified from the genome of 2-40 and heterologously expressed. The optimal pH for the activity of recombinant LPMO10A is 9.

View Article and Find Full Text PDF

The first physical barrier pathogenic microbes need to overcome for host colonization is the cuticle, epidermis, or skin of an animal. The nematode-trapping fungus Arthrobotrys flagrans is able to catch and digest nematodes like Caenorhabditis elegans by overcoming this physical barrier of the nematode and colonize the entire body. Here we characterized TrsA (trap-specific protein), a virulence factor of A.

View Article and Find Full Text PDF

Recent Advances in Bioinspired Cu-Directed C-H Hydroxylation Reactions.

Acc Chem Res

August 2025

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

ConspectusCu-dependent metalloenzymes catalyze a wide array of oxidative transformations using O as an oxidant under mild conditions. These include the hydroxylation of challenging organic substrates (e.g.

View Article and Find Full Text PDF