98%
921
2 minutes
20
Background: The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature-lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified FeO nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)-were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model.
Results: The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect.
Conclusions: Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297619 | PMC |
http://dx.doi.org/10.1186/s12989-022-00491-w | DOI Listing |
Cancer Res
September 2025
The Catholic University of Korea College of Medicine, Seoul, Korea (South), Republic of.
Alterations in the structure of the Golgi apparatus play a pivotal role in cancer progression and invasion. A better understanding of how Golgi morphology regulates the metastatic potential of cancer cells could help identify potential treatment strategies. In this study, we investigated how specific structural variations in the Golgi, particularly fragmentation and condensation, influence the malignancy of gastric cancer using human cell lines, xenograft mouse models, and human patient tissue samples.
View Article and Find Full Text PDFFront Mol Biosci
August 2025
Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, China.
Introduction: Sulforaphane (SFN) is recognized for its anti-inflammatory properties; however, the underlying molecular mechanisms remain unclear. In this study, we explored the effect of SFN on subarachnoid hemorrhage (SAH) and the potential mechanisms.
Methods: Sprague-Dawley (SD) rats were divided into three groups (n = 12): Sham + vehicle group (Sham + V), SAH + vehicle group (SAH + V), and SAH + SFN group (SAH + S).
Int J Pharm X
December 2025
Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
Intestinal inflammation particularly inflammatory bowel disease poses significant clinical challenges due to its chronic nature, limited treatment efficacy and adverse effects of conventional therapies like corticosteroids and biologics. Biomimetic nanocarriers have emerged as a transformative strategy to overcome these limitations by leveraging natural cell membranes for targeted drug delivery. This review critically examines the application of biomimetic nanocarriers as precision therapeutics for intestinal inflammation.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
Aim: Chronic small-intestinal mucositis (CIM) is a severe gastrointestinal complication that has limited treatment options. This study investigated the potential therapeutic effects of Daikenchuto (DKT), a traditional medicine, on mitigating methotrexate (MTX)-induced CIM in rats.
Methods: Male Sprague-Dawley rats were assigned to four groups: control, MTX, DKT-MTX, and DKT.
Front Cell Infect Microbiol
September 2025
Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.
Background: Co-infections of and can significantly increase morbidity and mortality. However, the effect of co-existence on virulence factor secretion and pro-inflammatory effects remain elusive.
Methods: We systematically investigated the virulence factors released by and under different culturing conditions using proteomics.