Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Perturbation of huntingtin (HTT)'s physiological function is one postulated pathogenic factor in Huntington's disease (HD). However, little is known how HTT is regulated in vivo. In a proteomic study, we isolated a novel ~40kDa protein as a strong binding partner of Drosophila HTT and demonstrated it was the functional ortholog of HAP40, an HTT associated protein shown recently to modulate HTT's conformation but with unclear physiological and pathologic roles. We showed that in both flies and human cells, HAP40 maintained conserved physical and functional interactions with HTT. Additionally, loss of HAP40 resulted in similar phenotypes as HTT knockout. More strikingly, HAP40 strongly affected HTT's stability, as depletion of HAP40 significantly reduced the levels of endogenous HTT protein while HAP40 overexpression markedly extended its half-life. Conversely, in the absence of HTT, the majority of HAP40 protein were degraded, likely through the proteasome. Further, the affinity between HTT and HAP40 was not significantly affected by polyglutamine expansion in HTT, and contrary to an early report, there were no abnormal accumulations of endogenous HAP40 protein in HD cells from mouse HD models or human patients. Lastly, when tested in Drosophila models of HD, HAP40 partially modulated the neurodegeneration induced by full-length mutant HTT while showed no apparent effect on the toxicity of mutant HTT exon 1 fragment. Together, our study uncovers a conserved mechanism governing the stability and in vivo functions of HTT and demonstrates that HAP40 is a central and positive regulator of endogenous HTT. Further, our results support that mutant HTT is toxic regardless of the presence of its partner HAP40, and implicate HAP40 as a potential modulator of HD pathogenesis through its multiplex effect on HTT's function, stability and the potency of mutant HTT's toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295956PMC
http://dx.doi.org/10.1371/journal.pgen.1010302DOI Listing

Publication Analysis

Top Keywords

hap40
14
htt
14
mutant htt
12
potential modulator
8
huntington's disease
8
endogenous htt
8
hap40 protein
8
htt's
5
protein
5
hap40 conserved
4

Similar Publications

Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal CAG expansion in the Huntingtin (HTT) gene. Given its simple genetic cause but complex pathogenic mechanisms, interest in targeting HTT for HD treatment is growing, necessitating a clear understanding of HTT regulation. HTT protein primarily exists in a core complex with HAP40, forming a highly ordered structure with two large globular domains connected by a bridge.

View Article and Find Full Text PDF

Protein localization signals and activity motifs have been defined within huntingtin since 2003. Advances in technology in protein structure determination by cryo-electron microscopy (EM) have led to 2.6 Å resolution structures of huntingtin and HAP40 for the majority of the protein, although structure of the amino terminus with the polyglutamine expansion remains elusive in the context of full-length huntingtin.

View Article and Find Full Text PDF

The Huntingtin Transport Complex.

Biochemistry

February 2025

Department of Bioengineering, McGill University, 353 McConnell Engineering Bldg., 3480 University Street, Montreal, QC H3A 0E9 Canada.

A dynamic network of scaffolding molecules, adaptor proteins, and motor proteins work together to orchestrate the movement of proteins, mRNA, and vesicular cargoes. Defects in intracellular transport can often lead to neurodegeneration. Huntingtin (HTT) is a ubiquitously expressed scaffolding protein with a multitude of cellular roles, including regulating the transport of various organelles.

View Article and Find Full Text PDF

To evaluate the artificial intelligence (AI)-guided AlphaFold algorithm for studying the binding interactions of human huntingtin and the aggregation of huntingtin peptides. Variants of huntingtin protein implicated in Huntington's disease were used as a model system to evaluate AlphaFold. Variants of huntingtin and huntingtin peptides with polyglutamine tracts (PQT) containing 21, 31, 51, or 78 glutamines were studied.

View Article and Find Full Text PDF

Colocalization, the spatial overlap of molecular entities, is often key to support their involvement in common functions. Existing colocalization tools, however, face limitations, particularly because of their basic statistical analysis and their low-throughput manual entry processes making them unsuitable for automation and potentially introducing bias. These shortcomings underscore the need for user-friendly tools streamlining colocalization assessments and enabling their robust and automated quantitative analyses.

View Article and Find Full Text PDF