Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acoustic resolution photoacoustic micros- copy (AR-PAM) can achieve deeper imaging depth in biological tissue, with the sacrifice of imaging resolution compared with optical resolution photoacoustic microscopy (OR-PAM). Here we aim to enhance the AR-PAM image quality towards OR-PAM image, which specifically includes the enhancement of imaging resolution, restoration of micro-vasculatures, and reduction of artifacts. To address this issue, a network (MultiResU-Net) is first trained as generative model with simulated AR-OR image pairs, which are synthesized with physical transducer model. Moderate enhancement results can already be obtained when applying this model to in vivo AR imaging data. Nevertheless, the perceptual quality is unsatisfactory due to domain shift. Further, domain transfer learning technique under generative adversarial network (GAN) framework is proposed to drive the enhanced image's manifold towards that of real OR image. In this way, perceptually convincing AR to OR enhancement result is obtained, which can also be supported by quantitative analysis. Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) values are significantly increased from 14.74 dB to 19.01 dB and from 0.1974 to 0.2937, respectively, validating the improvement of reconstruction correctness and overall perceptual quality. The proposed algorithm has also been validated across different imaging depths with experiments conducted in both shallow and deep tissue. The above AR to OR domain transfer learning with GAN (AODTL-GAN) framework has enabled the enhancement target with limited amount of matched in vivo AR-OR imaging data.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2022.3192072DOI Listing

Publication Analysis

Top Keywords

domain transfer
12
transfer learning
12
photoacoustic microscopy
8
acoustic resolution
8
optical resolution
8
resolution photoacoustic
8
imaging resolution
8
imaging data
8
perceptual quality
8
resolution
6

Similar Publications

Pretraining plays a pivotal role in acquiring generalized knowledge from large-scale data, achieving remarkable successes as evidenced by large models in CV and NLP. However, progress in the graph domain remains limited due to fundamental challenges represented by feature heterogeneity and structural heterogeneity. Recent efforts have been made to address feature heterogeneity via Large Language Models (LLMs) on text-attributed graphs (TAGs) by generating fixed-length text representations as node features.

View Article and Find Full Text PDF

Clustered regularly interspaced palindromic repeats (CRISPR)-associated transposons (CAST) consist of an integration between certain class 1 or class 2 CRISPR-Cas systems and Tn7-like transposons. Class 2 type V-K CAST systems are restricted to cyanobacteria. Here, we identified a unique subgroup of type V-K systems through phylogenetic analysis, classified as V-K_V2.

View Article and Find Full Text PDF

Background: Prescribing is a high-stakes clinical task where newly qualified doctors frequently report low confidence, with national data highlighting persistent error rates. Medical schools face logistical and staffing barriers in delivering high-quality, simulation-based prescribing education. Peer-led, interprofessional teaching, particularly by pharmacists, may offer a scalable solution in this context.

View Article and Find Full Text PDF

An ongoing goal of top-down mass spectrometry is to increase the performance for larger proteins. Using higher energy activation methods, like 193 nm ultraviolet photodissociation (UVPD), offers the potential to cause more extensive fragmentation of large proteins and thereby yield greater sequence coverage. Obtaining high sequence coverage requires confident identification and assignment of fragment ions, and this process is hampered by spectral congestion and low signal-to-noise ratio (S/N) of the fragment ions.

View Article and Find Full Text PDF

Structural basis of adenosine 2A receptor-balanced signaling activation relies on allosterically mediated structural dynamics.

Cell Chem Biol

September 2025

iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA; Institute of Molecular Biology and Bio

Balanced or biased G protein and arrestin transmembrane signaling by the adenosine 2A receptor (AAR) is related to ligand-induced allosterically triggered variation of structural dynamics in the intracellular half of the transmembrane domain (TMD). F-nuclear magnetic resonance (NMR) of a network of genetically introduced meta-trifluoromethyl-L-phenylalanine (mtfF) probes in the core of the TMD revealed signaling-related structure rearrangements leading from the extracellular orthosteric drug-binding site to the G protein and arrestin contacts on the intracellular surface. The key element in this structural basis of signal transfer is dynamic loss of structural order in the intracellular half of the TMD, as manifested by local polymorphisms and associated rate processes within the molecular architecture determined previously by X-ray crystallography.

View Article and Find Full Text PDF