98%
921
2 minutes
20
Contracting Parties to the OSPAR Convention for the Protection of the Maine Environment of the North-East Atlantic are required to undertake monitoring and assessment of both inorganic and organic contaminants. There is a requirement to assess contaminants across different trophic levels on an ecosystem-specific basis. However, this is currently constrained by the availability of relevant samples to cover the full range of trophic levels. This study investigates the variability (inter- and intra-species variation) of the concentrations and distributions of thirty-two polychlorinated biphenyl (PCB) congeners and nine polybrominated diphenyl ether (PBDE) congeners in twenty-six species covering four trophic levels from different geographic locations around Scotland. Trophic magnification factors (TMFs) were calculated using a traditional method and a balanced method for both the ICES-7 PCBs and BDE47, to refine and improve the application of TMFs to assess and predict biomagnification risk to biota in the marine environment. There were clear differences in congener percentage distribution between sample categories and species, with differences influenced by physiological processes and eco-biological parameters. Trophic magnification was found to occur for the ICES-7 PCBs and BDE47 using the traditional method, with the highest degree of trophic magnification reported for CB52. An unbalanced dataset was found to influence the calculated TMF and in some cases, the overall conclusion of the trophic transfer of PCB and PBDE congeners. The balanced method is highly recommended for calculating TMFs to ensure that the TMF is a true indication of the biomagnification potential, particularly when conducting regional comparisons for which sampling requirements are difficult to achieve.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.119752 | DOI Listing |
Environ Toxicol Chem
September 2025
Univ. Savoie Mont Blanc, CNRS. EDYTEM.
The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.
View Article and Find Full Text PDFIMA Fungus
August 2025
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China Institute of Microbiology, Chinese Academy of Sciences Beijing China.
is a widely consumed edible mushroom and the only species currently cultivated on an industrial scale. Despite its economic importance, its trophic strategy and genomic adaptations remain elusive. Here, we presented high-quality, chromosome-level genome assemblies for two sexually compatible monokaryons (PP78 and PP85) of .
View Article and Find Full Text PDFEcology
September 2025
Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
Recent evidence suggests that parasite-mediated reductions in food intake (i.e., anorexia) in herbivores can trigger trophic cascades that increase producer biomass.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Florida International University, Civil and Environmental Engineering, 10555 West Flagler Street, Engineering Center, Miami, Florida 33174, USA. Electronic address:
Marine ecosystems are increasingly threatened by anthropogenic pollutants, including plastics, persistent organic pollutants, heavy metals, oil, and emerging contaminants. This meta-analysis examined the accumulation patterns of five major contaminants-mercury (Hg), polychlorinated biphenyls (PCBs), microplastics, per- and polyfluoroalkyl substances (PFAS), and polycyclic aromatic hydrocarbons (PAHs)-in relation to trophic level and lifespan across marine species. Data synthesis revealed distinct differences in bioaccumulation and biomagnification between legacy and emerging contaminants.
View Article and Find Full Text PDFBioresour Technol
September 2025
Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France. Electronic address:
Trophic conversion - a sequential cultivation strategy combining heterotrophic and phototrophic growth - offers a promising route for large-scale microalgae production by coupling the high biomass yields of heterotrophy with the biochemical advantages of phototrophy. Despite its potential, the cellular mechanisms governing this transition remain poorly understood. Here is presented the first mechanistic dissection of trophic conversion in Chlorella vulgaris, using isoactinic light conditions (30-600 µmol photons/m/s) and inocula with varied physiological states.
View Article and Find Full Text PDF