98%
921
2 minutes
20
Objective: Neurological correlates of impaired insight in non-affective psychosis remain unclear. This study aimed to review and meta-analyze the studies assessing the grey matter volumetric correlates of impaired insight in non-affective psychosis.
Methods: This study consisted of a systematic review of 23 studies, and a meta-analysis with SDM-PSI of the 11 studies that were whole-brain and reported maps or peaks of correlation of studies investigating the grey matter volumetric correlates of insight assessments of non-affective psychosis, PubMed and OVID datasets were independently reviewed for articles reporting neuroimaging correlates of insight in non-affective psychosis. Quality assessment was realized following previous methodological approaches for the ABC quality assessment test of imaging studies, based on two main criteria: the statistical power and the multidimensional assessment of insight. Study peaks of correlation between grey matter volume and insight were used to recreate brain correlation maps.
Results: A total of 418 records were identified through database searching. Of these records, twenty-three magnetic resonance imaging (MRI) studies that used different insight scales were included. The quality of the evidence was high in 11 studies, moderate in nine, and low in three. Patients with reduced insight showed decreases in the frontal, temporal (specifically in superior temporal gyrus), precuneus, cingulate, insula, and occipital lobes cortical grey matter volume. The meta-analysis indicated a positive correlation between grey matter volume and insight in the right insula (i.e., the smaller the grey matter, the lower the insight).
Conclusion: Several brain areas might be involved in impaired insight in patients with non-affective psychoses. The methodologies employed, such as the applied insight scales, may have contributed to the considerable discrepancies in the findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rpsmen.2022.06.007 | DOI Listing |
Bioelectromagnetics
September 2025
Competence Centre of Sleep Medicine, Charité -Universitaetsmedizin Berlin, Berlin, Germany.
A new whole-body exposure facility for a randomized, double-blind, cross-over provocation study investigating possible effects of 50 Hz magnetic field exposure on sleep and markers of Alzheimer's disease has been developed and dosimetrically analyzed. The exposure facility was custom-tailored for the sleep laboratory where the study was carried out and enables magnetic flux densities of up to 30 μT with a maximum field inhomogeneity of less than ± 20%. Exposure is applied fully software-controlled and in a blinded and randomized manner.
View Article and Find Full Text PDFNeurochem Res
September 2025
International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
The concept of the central nervous system (CNS) reserve emerged from the mismatch often observed between the extent of brain pathology and its clinical manifestations. The cognitive reserve reflects an "active" capacity, driven by the plasticity of CNS cellular components and shaped by experience, learning, and memory processes that increase resilience. We propose that neuroglial cells are central to defining this resilience and cognitive reserve.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
iInstitut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
Cerebral Amyloid Angiopathy, a common age-related small vessel disease leading to hemorrhagic stroke, shares many characteristics with Alzheimer's disease: toxic amyloid deposits, microvascular alterations and enlarged perivascular spaces (EPVS). Together, PVS enlargement, reduced amyloid-β clearance and further accumulation form a vicious cycle underlying disease progression. Yet, the neuropathological correlates of EPVS, including the associated angioarchitecture, are poorly understood.
View Article and Find Full Text PDFJ Educ Health Promot
July 2025
Department of Medical Imaging Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Background: The relationship between obesity and brain structure remains unclear, particularly in sedentary individuals. This study aimed to compare structural brain volumes among sedentary normal weight, overweight, and obese adults.
Materials And Methods: In this cross-sectional study, 102 sedentary adults (34 normal weight, 34 overweight, 34 obese) underwent brain MRI scans.
Front Neurol
August 2025
Department of Neuroradiology, Hôpital Maison-Blanche, Université Reims-Champagne-Ardenne, Reims, France.
Objective: This study evaluates age- and sex-related differences in brain volume, including normalized gray matter (nGM), normalized white matter (nWM), cerebrospinal fluid (CSF) volume, and total intracranial volume (TIV) in cognitively normal adults using automatic volume segmentation on 3.0 Tesla MRI.
Methods: A prospective cross-sectional study conducted from October 2021 to September 2022 included 110 cognitively normal participants.