Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Small open reading frame-encoded peptides (SEPs) are microproteins with a length of 100 amino acids or less, which may play a critical role in maintaining cell homeostasis under stress. Therefore, we used mass spectrometry-based proteomics to explore microproteins potentially involved in cellular stress responses in . A total of 225 microproteins with 1920 unique peptides were identified under six culture conditions: normal, oxidation, starvation, ultraviolet radiation, heat shock, and heat shock with starvation. Among these microproteins, we found 70 SEPs with 75 unique peptides. The annotated microproteins are involved in stress-related processes, such as cell redox reactions, cell wall modification, protein folding and degradation, and DNA damage repair. It suggests that SEPs may also play similar functions under stress conditions. For example, SEP IP_008057, translated from a short coding sequence of , may play a role in heat shock. This study identified stress-responsive SEPs in and provided valuable information to determine the functions of these proteins, which enrich the genome and proteome of and show clues to improving the stress tolerance of .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.2c00212 | DOI Listing |