Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Th17 cells are key drivers of autoimmune disease. However, the signaling pathways regulating Th17 polarization are poorly understood. Hedgehog signaling regulates cell fate decisions during embryogenesis and adult tissue patterning. Here we find that cell-autonomous Hedgehog signaling, independent of exogenous ligands, selectively drives the polarization of Th17 cells but not other T helper cell subsets. We show that endogenous Hedgehog ligand, Ihh, signals to activate both canonical and non-canonical Hedgehog pathways through Gli3 and AMPK. We demonstrate that Hedgehog pathway inhibition with either the clinically-approved small molecule inhibitor vismodegib or genetic ablation of Ihh in CD4T cells greatly diminishes disease severity in two mouse models of intestinal inflammation. We confirm that Hedgehog pathway expression is upregulated in tissue from human ulcerative colitis patients and correlates with Th17 marker expression. This work implicates Hedgehog signaling in Th17 polarization and intestinal immunopathology and indicates the potential therapeutic use of Hedgehog inhibitors in the treatment of inflammatory bowel disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9281293PMC
http://dx.doi.org/10.1038/s41467-022-31722-5DOI Listing

Publication Analysis

Top Keywords

hedgehog signaling
16
th17 polarization
12
cell-autonomous hedgehog
8
th17 cells
8
hedgehog
8
hedgehog pathway
8
th17
6
signaling
5
signaling controls
4
controls th17
4

Similar Publications

Overcoming resistance in RET-altered cancers through rational inhibitor design and combination therapies.

Bioorg Chem

September 2025

Department of Pharmacy, Personalized Drug Research and Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

RET tyrosine kinase, a key regulator of cellular signaling, is abnormally activated due to mutations or fusions in various cancers, making it an important therapeutic target. Traditional multi-kinase inhibitors (MKIs, such as cabozantinib and vandetanib) exhibit significant side effects due to non-selective inhibition of targets like VEGFR, and also suffer from resistance associated with RET mutations (e.g.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading cancers worldwide, and its development is strongly associated with the tumour microenvironment, particularly fibrosis and chronic inflammation. This study aims to investigate the role of the Hedgehog (Hh) pathway, a key signalling pathway in HCC progression, in the interaction between HCC cells and monocytes, which are central players in inflammation. Using a transwell migration assay, GLI1, the downstream transcriptional effector of the Hh pathway in HCC cells, was found to promote the migration of THP-1 monocyte cells.

View Article and Find Full Text PDF

Redundant and novel functions of scube genes during zebrafish development.

Dev Biol

September 2025

Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia. Electronic address:

The N-glycoprotein SCUBE family (Scube1, Scube2, and Scube3) plays diverse roles in vertebrate development and disease, yet many specific functions of the three family members remain unclear. These proteins exhibit broad tissue expression patterns, exist as soluble or membrane-tethered forms, and can form homo- or heteromeric complexes with each other, exerting both short- and long-range effects. Individual functional characterisation proves challenging because overlapping expression patterns and compensatory mechanisms likely obscure specific roles.

View Article and Find Full Text PDF

AOP 460: Antagonism of Smoothened receptor leading to orofacial clefting.

ALTEX

August 2025

Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.

Sonic hedgehog (SHH) is a major intercellular signaling pathway involved in the orchestration of embryogenesis, including orofacial morphogenesis. The SHH pathway is sensitive to disruption, including both genetic predisposition and chemical-induced disruption at multiple molecular targets including antagonism of the SHH signal transducer Smoothened (SMO). Here we report the adverse outcome pathway (AOP) 460 describing the linkage between antagonism of the SMO receptor, a key intermediate in the hedgehog signaling, and orofacial clefts (OFCs).

View Article and Find Full Text PDF

Neural crest cells (NCCs) are a multipotent cell population that undergo specification, epithelial-to-mesenchymal transition, migration, and differentiation into a plethora of cell types. A wealth of studies across various embryonic model systems have established dogma as to the molecular mechanisms and signaling cascades that contribute to NCC development. While Wnt, FGF, and BMP signaling pathways have well-established and essential roles in several aspects of NCC development, the Hedgehog (HH) signaling pathway has received limited attention for any specific role in this process.

View Article and Find Full Text PDF