A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Influence of the Nature of Aliphatic Hydrophobic Physical Crosslinks on Water Crystallization in Copolymer Hydrogels. | LitMetric

Influence of the Nature of Aliphatic Hydrophobic Physical Crosslinks on Water Crystallization in Copolymer Hydrogels.

J Phys Chem B

Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The local environment within a hydrogel influences the properties of water, including the propensity for ice crystallization. Water-swollen amphiphilic copolymers produce tunable nanoscale environments, which are defined by hydrophobic associations, for the water molecules. Here, the antifreeze properties for equilibrium-swollen amphiphilic copolymers with a common hydrophilic component, hydroxyethyl acrylate (HEA), but associated through crystalline (octadecyl acrylate, ODA) or rubbery (ethylhexyl acrylate, EHA) hydrophobic segments, are examined. Differences in the efficacy of the associations can be clearly enunciated from compositional solubility limits for the copolymers in water (<2.6 mol % ODA vs ≤14 mol % EHA), and these differences can be attributed to the strength of the association. The equilibrium-swollen HEA-ODA copolymers are viscoelastic solids, while the swollen HEA-EHA copolymers are viscoelastic liquids. Cooling these swollen copolymers to nearly 200 K induces some crystallization of the water, where the fraction of water frozen depends on the details of the nanostructure. Decreasing the mean free path of water by increasing the ODA composition from 10 to 25 mol % leads to fractionally more unfrozen water (66-87%). The swollen HEA-EHA copolymers only marginally inhibit ice (<13%) except with 45 mol % EHA, where nearly 60% of the water remains amorphous on cooling to 200 K. In general, the addition of the EHA leads to less effective ice inhibition than analogous covalently crosslinked HEA hydrogels (19.9 ± 1.8%). These results illustrate that fluidity of confining surfaces can provide pathways for critical nuclei to form and crystal growth to proceed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c02438DOI Listing

Publication Analysis

Top Keywords

amphiphilic copolymers
8
influence nature
4
nature aliphatic
4
aliphatic hydrophobic
4
hydrophobic physical
4
physical crosslinks
4
water
4
crosslinks water
4
water crystallization
4
crystallization copolymer
4

Similar Publications