98%
921
2 minutes
20
The mitotic deacetylase complex MiDAC has recently been shown to play a vital physiological role in embryonic development and neurite outgrowth. However, how MiDAC functionally intersects with other chromatin-modifying regulators is poorly understood. Here, we describe a physical interaction between the histone H3K27 demethylase UTX, a complex-specific subunit of the enhancer-associated MLL3/4 complexes, and MiDAC. We demonstrate that UTX bridges the association of the MLL3/4 complexes and MiDAC by interacting with ELMSAN1, a scaffolding subunit of MiDAC. Our data suggest that MiDAC constitutes a negative genome-wide regulator of H4K20ac, an activity which is counteracted by the MLL3/4 complexes. MiDAC and the MLL3/4 complexes co-localize at many genomic regions, which are enriched for H4K20ac and the enhancer marks H3K4me1, H3K4me2, and H3K27ac. We find that MiDAC antagonizes the recruitment of UTX and MLL4 and negatively regulates H4K20ac, and to a lesser extent H3K4me2 and H3K27ac, resulting in transcriptional attenuation of associated genes. In summary, our findings provide a paradigm how the opposing roles of chromatin-modifying components, such as MiDAC and the MLL3/4 complexes, balance the transcriptional output of specific gene expression programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275676 | PMC |
http://dx.doi.org/10.26508/lsa.202201572 | DOI Listing |
EMBO Rep
September 2025
Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA.
The t(11;22) translocation encodes the EWS::FLI1 fusion oncoprotein which is the primary driver of Ewing sarcoma. EWS::FLI1 creates unique, de novo pathogenic enhancers that drive gene expression and are a central mechanism of oncogenesis. Which chromatin regulatory proteins are critical to this mechanism is understudied.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
The Complex Proteins Associated with Set1 (COMPASS)-like complex regulates developmental gene expression via histone 3 lysine 4 (H3K4) methylation and other transcriptional mechanisms. Several members of the lysine methyltransferase 2C and D (KMT2C/D)-COMPASS-like complex are implicated in human congenital heart and vascular defects. The investigation of the orthologous Trithorax-related (Trr)-COMPASS-like complex in (the fruit fly) offers a versatile model to explore gene function in the developing heart.
View Article and Find Full Text PDFNat Commun
July 2025
Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Circulating blood platelets are responsible for maintaining hemostasis. They are released into blood vessels from mature megakaryocytes. Although several transcription factors have been reported to orchestrate the transcriptional programs required for platelet production, how chromatin regulators control these processes is still poorly understood.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
Nat Chem Biol
December 2024
Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The stabilization of stalled forks has emerged as a crucial mechanism driving resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient tumors. Here, we identify UFL1, a UFM1-specific E3 ligase, as a pivotal regulator of fork stability and the response to PARP inhibitors in BRCA1/2-deficient cells. On replication stress, UFL1 localizes to stalled forks and catalyzes the UFMylation of PTIP, a component of the MLL3/4 methyltransferase complex, specifically at lysine 148.
View Article and Find Full Text PDF