Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Point cloud processing based on deep learning is developing rapidly. However, previous networks failed to simultaneously extract inter-feature interaction and geometric information. In this paper, we propose a novel point cloud analysis module, CGR-block, which mainly uses two units to learn point cloud features: correlated feature extractor and geometric feature fusion. CGR-block provides an efficient method for extracting geometric pattern tokens and deep information interaction of point features on disordered 3D point clouds. In addition, we also introduce a residual mapping branch inside each CGR-block module for the further improvement of the network performance. We construct our classification and segmentation network with CGR-block as the basic module to extract features hierarchically from the original point cloud. The overall accuracy of our network on the ModelNet40 and ScanObjectNN benchmarks achieves 94.1% and 83.5%, respectively, and the instance mIoU on the ShapeNet-Part benchmark also achieves 85.5%, proving the superiority of our method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269159PMC
http://dx.doi.org/10.3390/s22134878DOI Listing

Publication Analysis

Top Keywords

point cloud
20
correlated feature
8
feature extractor
8
extractor geometric
8
geometric feature
8
feature fusion
8
cloud analysis
8
point
7
cgr-block
5
cloud
5

Similar Publications

This work reports the nanoscale micellar formation in single and mixed surfactant systems by combining an amphiphilic graft copolymer, Soluplus® (primary surfactant), blended with other polyoxyethylene (POE)-based nonionic surfactants such as Kolliphor® HS15, Kolliphor® EL, Tween-80, TPGS®, and Pluronics® P123 in an aqueous solution environment. The solution behaviour of these surfactants as a single system were analyzed in a wide range of surfactant concentrations and temperatures. Rheological measurements revealed distinct solution behaviour in the case of Soluplus®, ranging from low-viscosity () and fluid-like behavior at ≤20% w/v to a highly viscous state at ≥90% w/v, where the loss modulus ('') exceeded the storage modulus (').

View Article and Find Full Text PDF

Background And Objectives: Stroke is a leading cause of long-term disability. Etanercept, a competitive tumor necrosis factor-α inhibitor, has been proposed as a potential treatment for post-stroke impairments when given through a perispinal subcutaneous injection. We aimed to evaluate the safety and efficacy of perispinal etanercept in patients with chronic stroke.

View Article and Find Full Text PDF

Multi-modal data fusion plays a critical role in enhancing the accuracy and robustness of perception systems for autonomous driving, especially for the detection of small objects. However, small object detection remains particularly challenging due to sparse LiDAR points and low-resolution image features, which often lead to missed or imprecise detections. Currently, many methods process LiDAR point clouds and visible-light camera images separately, and then fuse them in the detection head.

View Article and Find Full Text PDF

Significance: Accurate cell classification is essential in disease diagnosis and drug screening. Three-dimensional (3D) voxel models derived from holographic tomography effectively capture the internal structural features of cells, enhancing classification accuracy. However, their high dimensionality leads to significant increases in data volume, computational complexity, processing time, and hardware costs, which limit their practical applicability.

View Article and Find Full Text PDF

Estimating dense point-to-point correspondences between two isometric shapes represented as 3D point clouds is a fundamental problem in geometry processing, with applications in texture and motion transfer. However, this task becomes particularly challenging when the shapes undergo non-rigid transformations, as is often the case with approximately isometric point clouds. Most existing algorithms address this challenge by establishing correspondences between functions defined on the shapes, rather than directly between points, because function mappings admit a linear representation in the spectral domain.

View Article and Find Full Text PDF