A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development of Molecularly Imprinted Polymers for Fenthion Detection in Food and Soil Samples. | LitMetric

Development of Molecularly Imprinted Polymers for Fenthion Detection in Food and Soil Samples.

Nanomaterials (Basel)

Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, China.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Modern agricultural production is greatly dependent on pesticide usage, which results in severe environmental pollution, health risks and degraded food quality and safety. Molecularly imprinted polymers are one of the most prominent approaches for the detection of pesticide residues in food and environmental samples. In this research, we prepared molecularly imprinted polymers for fenthion detection by using beta-cyclodextrin as a functional monomer and a room-temperature ionic liquid as a cosolvent. The characterization of the developed polymers was carried out. The polymers synthesized by using the room-temperature ionic liquid as the cosolvent had a good adsorption efficiency of 26.85 mg g, with a short adsorption equilibrium time of 20 min, and the results fitted well with the Langmuir isotherm model and pseudo-second-order kinetic model. The polymer showed cross-selectivity for methyl-parathion, but it had a higher selectivity as compared to acetamiprid and abamectin. A recovery of 87.44-101.25% with a limit of detection of 0.04 mg L and a relative standard deviation of below 3% was achieved from soil, lettuce and grape samples, within the linear range of 0.02-3.0 mg L, using high-performance liquid chromatography with an ultraviolet detector. Based on the results, we propose a new, convenient and practical analytical method for fenthion detection in real samples using improved imprinted polymers with room-temperature ionic liquid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268004PMC
http://dx.doi.org/10.3390/nano12132129DOI Listing

Publication Analysis

Top Keywords

imprinted polymers
16
molecularly imprinted
12
fenthion detection
12
room-temperature ionic
12
ionic liquid
12
polymers fenthion
8
liquid cosolvent
8
polymers
6
detection
5
development molecularly
4

Similar Publications