Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is a diffuse parenchymal lung disease characterized by exuberant deposition of extracellular matrix (ECM) proteins in the lung interstitium, which contributes to substantial morbidity and mortality in IPF patients. Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endopeptidases, many of which have been implicated in the regulation of ECM degradation in lung fibrosis. However, the roles of MMP-2 and -9 (also termed gelatinases A and B) have not yet been explored in lung fibrosis in detail.

Methods: AdTGF-β1 was applied via orotracheal routes to the lungs of WT, MMP-2 KO, MMP-9 KO and MMP-2/-9 dKO mice on day 0 to induce lung fibrosis. Using hydroxyproline assay, FlexiVent based lung function measurement, histopathology, western blot and ELISA techniques, we analyzed MMP-2 and MMP-9 levels in BAL fluid and lung, collagen contents in lung and lung function in mice on day 14 and 21 post-treatment.

Result: IPF lung homogenates exhibited significantly increased levels of MMP-2 and MMP-9, relative to disease controls. Enzymatically active MMP-2 and MMP-9 was increased in lungs of mice exposed to adenoviral TGF-β1, suggesting a role for these metalloproteinases in lung fibrogenesis. However, we found that neither MMP-2 or MMP-9 nor combined MMP-2/-9 deletion had any effect on experimental lung fibrosis in mice.

Conclusion: Together, our data strongly suggest that both gelatinases MMP-2 and MMP-9 play only a subordinate role in experimental lung fibrosis in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270768PMC
http://dx.doi.org/10.1186/s12931-022-02105-7DOI Listing

Publication Analysis

Top Keywords

lung fibrosis
24
mmp-2 mmp-9
24
lung
14
experimental lung
12
fibrosis mice
8
mice day
8
lung function
8
mmp-9
7
fibrosis
7
mmp-2
7

Similar Publications

Respiratory system diseases, including infections, inflammation, fibrosis, cancer, and others, impose a substantial burden on human health worldwide. The respiratory tract is constantly exposed to external stimuli due to its connection with the outside environment. Therefore, the immune system plays a crucial role in respiratory diseases.

View Article and Find Full Text PDF

Background: Organic chemicals have been known to cause allergic diseases such as bronchial asthma and hypersensitivity pneumonitis; however, the possibility that they do not cause irreversible pulmonary fibrosis has not been considered. Polyacrylic acid (PAA), an organic chemical, has caused irreversible progressive pulmonary fibrosis in exposed workers, indicating its potential to induce pulmonary inflammation and fibrosis. Although intratracheal instillation studies are commonly used for evaluating lung pathology, traditional methods face challenges with chemical substances, particularly nanoparticles, which tend to aggregate in suspension and prevent uniform pulmonary distribution.

View Article and Find Full Text PDF

Mouse intestine as a useful model for CFTR electrophysiology function analysis.

Methods Cell Biol

September 2025

Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy; CEINGE-Biotecnologie Avanzate, Naples, Italy.

Cystic fibrosis (CF) is a genetic disorder primarily known for its severe impact on lung function, but it also significantly affects the digestive system, leading to complications such as intestinal blockages, malabsorption, inflammation, and microbial dysbiosis. The study of CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) effects on intestinal physiology is critical for developing new effective treatments. This work highlights the use of the mouse intestine as a valuable model for analyzing cellular electrophysiology and CFTR function.

View Article and Find Full Text PDF

Diagnoses of prediabetes and metabolic syndromes, such as metabolic-associated steatotic liver disease (MASLD), are increasing at an alarming rate worldwide, often simultaneously. A significant consequence of these is high risk of cardiovascular disease, highlighting the need for cardiac-specific therapeutics for intervention during the prediabetic stage. Recent studies have demonstrated that chemogenetic activation of the cardiac parasympathetic system through hypothalamic oxytocin (OXT) neurons provides cardioprotective effects in heart disease models by targeting excitatory neurotransmission to brainstem cardiac vagal neurons.

View Article and Find Full Text PDF