98%
921
2 minutes
20
Objective: The prediction model of bone marrow infiltration (BMI) in patients with malignant lymphoma (ML) was established based on the logistic regression and the XGBoost algorithm. The model's prediction efficiency was evaluated.
Methods: A total of 120 patients diagnosed with ML in the department of hematology from January 2018 to January 2021 were retrospectively selected. The training set ( = 84) and test set ( = 36) were randomly divided into 7 : 3, and logistic regression and XGBoost algorithm models were constructed using the training set data. Predictors of BMI were screened based on laboratory indicators, and the model's efficacy was evaluated using test set data.
Results: The prediction algorithm model's top three essential characteristics are the blood platelet count, soluble interleukin-2 receptor, and non-Hodgkin's lymphoma. The area under the curve of the logistic regression model for predicting the BMI of patients with ML was 0.843 (95% CI: 0.761~0.926). The area under the curve of the XGBoost model is 0.844 (95% CI: 0.765~0.937).
Conclusion: The prediction model constructed in this study based on logistic regression and XGBoost algorithm has a good prediction model. The results showed that blood platelet count and soluble interleukin-2 receptor were good predictors of BMI in ML patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256353 | PMC |
http://dx.doi.org/10.1155/2022/9620780 | DOI Listing |
Knee Surg Relat Res
September 2025
Florida Orthopaedic Institute, Gainesville, FL, 32607, USA.
Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.
View Article and Find Full Text PDFScand J Trauma Resusc Emerg Med
September 2025
Department of Clinical Sciences, Malmö, Section of Surgery, Lund University, Malmö, Sweden.
Background: Antithrombotic treatment might affect bleeding symptoms, identification of bleeding source and treatment for patients with acute gastrointestinal bleeding. This study aims to investigate possible differences in initial bleeding symptoms, identified bleeding site and treatment of patients with or without antithrombotic medication admitted for gastrointestinal bleeding.
Methods: All consecutive adult patients primarily admitted for gastrointestinal bleeding at Skane University Hospital between 2018-01-01 and 2019-06-31, were included in this study.
J Orthop Res
September 2025
Interdisciplinary Orthopedics, Department of Orthopedics Surgery, Aalborg University Hospital, Aalborg, Denmark.
Functional recovery after total knee arthroplasty (TKA) varies widely among individuals, and traditional assessments often fail to detect subtle changes in real-world walking ability. Wearable sensors offer continuous and objective tracking of gait outside of clinical settings. In this prospective, longitudinal study, thirty-one patients undergoing unilateral TKA wore thigh-mounted accelerometers continuously from 2 weeks before surgery through 90 days postoperatively.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden.
To evaluate a simplified version of the Clinical Frailty Scale (SCFS) among older adults presenting to the emergency department (ED) with acute dyspnea. In this retrospective single-center cohort study, we included patients from the Acute Dyspnea Study (ADYS) cohort. Severity of illness was assessed using the Medical Emergency Triage and Treatment System (METTS).
View Article and Find Full Text PDFGeroscience
September 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.
View Article and Find Full Text PDF