A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Early Systemic Glycolytic Shift After Aneurysmal Subarachnoid Hemorrhage is Associated with Functional Outcomes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Aneurysmal subarachnoid hemorrhage (aSAH) leads to a robust systemic inflammatory response. We hypothesized that an early systemic glycolytic shift occurs after aSAH, resulting in a unique metabolic signature and affecting systemic inflammation.

Methods: Control patients and patients with aSAH were analyzed. Samples from patients with aSAH were collected within 24 h of aneurysmal rupture. Mass spectrometry-based metabolomics was performed to assess relative abundance of 16 metabolites involved in the tricarboxylic acid cycle, glycolysis, and pentose phosphate pathway. Principal component analysis was used to segregate control patients from patients with aSAH. Dendrograms were developed to depict correlations between metabolites and cytokines. Analytic models predicting functional outcomes were developed, and receiver operating curves were compared.

Results: A total of 122 patients with aSAH and 38 control patients were included. Patients with aSAH had higher levels of glycolytic metabolites (3-phosphoglycerate/2-phosphoglycerate, lactate) but lower levels of oxidative metabolites (succinate, malate, fumarate, and oxalate). Patients with higher clinical severity (Hunt-Hess Scale score ≥ 4) had higher levels of glyceraldehyde 3-phosphate and citrate but lower levels of α-ketoglutarate and glutamine. Principal component analysis readily segregated control patients from patients with aSAH. Correlation analysis revealed distinct clusters in control patients that were not observed in patients with aSAH. Higher levels of fumarate were associated with good functional outcomes at discharge (odds ratio [OR] 1.76, 95% confidence interval [CI] 1.15-2.82) in multivariable models, whereas higher levels of citrate were associated with poor functional outcomes at discharge (OR 0.36, 95% CI 0.16-0.73) and at 3 months (OR 0.35, 95% CI 0.14-0.81). No associations were found with delayed cerebral ischemia. Levels of α-ketoglutarate and glutamine correlated with lower levels of interleukin-8, whereas fumarate was associated with lower levels of tumor necrosis factor alpha.

Conclusions: Aneurysmal subarachnoid hemorrhage results in a unique pattern of plasma metabolites, indicating a shift toward glycolysis. Higher levels of fumarate and lower levels of citrate were associated with better functional outcomes. These metabolites may represent targets to improve metabolism after aSAH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473383PMC
http://dx.doi.org/10.1007/s12028-022-01546-8DOI Listing

Publication Analysis

Top Keywords

patients asah
28
functional outcomes
20
control patients
20
higher levels
20
lower levels
20
patients
13
aneurysmal subarachnoid
12
subarachnoid hemorrhage
12
patients patients
12
levels
11

Similar Publications