Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cellobiose lipids (CL) are glycolipids synthesized by species with potential application as detergents or in cosmetics. This study identified process optimisation potential for CL fermentation based on process modelling and techno-economic analysis. Using a stoichiometric equation based on laboratory data, we calculated the maximum possible CL yield Y of 0.45 g·g at the biomass yield of 0.10 g·g with an strain. Due to substrate inhibition that may occur at high glucose concentrations, a fed-batch process to increase biomass and CL concentrations was considered in our model. Simulation of different process scenarios showed that the choice of aeration units with high oxygen transfer rates and adaptation of power input to oxygen uptake can significantly decrease electricity consumption. We further assessed scenarios with different fermentation media and CL purification methods, suggesting additional process optimisation potential. Here the omission of vitamins from the fermentation medium proved to be a possible mean to enhance process economy, without compromising CL productivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249125PMC
http://dx.doi.org/10.3389/fbioe.2022.913351DOI Listing

Publication Analysis

Top Keywords

techno-economic analysis
8
process optimisation
8
optimisation potential
8
process
6
analysis driver
4
driver optimisation
4
optimisation cellobiose
4
cellobiose lipid
4
fermentation
4
lipid fermentation
4

Similar Publications

Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.

View Article and Find Full Text PDF

Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.

View Article and Find Full Text PDF

Hydrothermal-based Wastewater Solids Management for Targeted Resource Recovery and Decarbonization in the Contiguous U.S.

Environ Sci Technol

September 2025

The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.

Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.

View Article and Find Full Text PDF

Accumulation of waste plastics on the earth's surface is a global challenge. There is a possibility of turning this challenge into an opportunity by plastic upcycling. In this work, the potential of bismuth oxychloride (BiOCl) as a heterogeneous catalyst for the glycolysis of polyethylene terephthalate (PET) is reported.

View Article and Find Full Text PDF

Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency, this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore, hybrid storage systems have been used to evaluate their viability and cost-benefits.

View Article and Find Full Text PDF