Glioblastoma, from disease understanding towards optimal cell-based in vitro models.

Cell Oncol (Dordr)

Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Glioblastoma (GBM) patients are notoriously difficult to treat and ultimately all succumb to disease. This unfortunate scenario motivates research into better characterizing and understanding this disease, and into developing novel research tools by which potential novel therapeutics and treatment options initially can be evaluated pre-clinically. Here, we provide a concise overview of glioblastoma epidemiology, disease classification, the challenges faced in the treatment of glioblastoma and current novel treatment strategies. From this, we lead into a description and assessment of advanced cell-based models that aim to narrow the gap between pre-clinical and clinical studies. Such in vitro models are required to deliver reliable and meaningful data for the development and pre-validation of novel therapeutics and treatments.

Conclusions: The toolbox for GBM cell-based models has expanded substantially, with the possibility of 3D printing tumour tissues and thereby replicating in vivo tissue architectures now looming on the horizon. A comparison of experimental cell-based model systems and techniques highlights advantages and drawbacks of the various tools available, based on which cell-based models and experimental approaches best suited to address a diversity of research questions in the glioblastoma research field can be selected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9424171PMC
http://dx.doi.org/10.1007/s13402-022-00684-7DOI Listing

Publication Analysis

Top Keywords

cell-based models
12
vitro models
8
novel therapeutics
8
glioblastoma
5
cell-based
5
models
5
glioblastoma disease
4
disease understanding
4
understanding optimal
4
optimal cell-based
4

Similar Publications

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

The Skp2-Cks1 protein-protein interaction (PPI) within the SCF ubiquitin ligase acts as a co-receptor for phosphorylated CDK inhibitors-most prominently p27-relieving CDK inhibition and advancing the cell cycle, a dependency accentuated in RB-pathway-defective cancers. Crystallographic and cryo-EM analyses delineate a composite pocket formed by the Skp2 leucine-rich-repeat groove and the phosphate-recognition site of Cks1; Cks1-centered open-closed motions further influence druggability. Using HTRF/TR-FRET and AlphaScreen biochemistry, alongside cell-based target-engagement readouts in some studies, three small-molecule classes have emerged that disrupt this PPI: 1,3-diphenyl-pyrazines and triazolo[1,5-a]pyrimidines (lead E35) with low-micromolar potency, and "Skp2E3LI" compounds with micromolar cellular activity.

View Article and Find Full Text PDF

Background: Epilepsy, a significant neurological condition marked by the occurrence of repeated seizures, continues to pose a substantial health challenge. Previous studies have indicated that Dipeptidyl Peptidase-4 (DPP4) inhibitors may possess antiepileptic properties. Ferroptosis, a newly discovered type of programmed cell death, has recently surfaced as a promising therapeutic target in the management of epilepsy.

View Article and Find Full Text PDF

Antigen-binding proteins, such as nanobodies, modified with functional small molecules hold great potential for applications including imaging probes, drug conjugates, and localized catalysts. However, traditional chemical labeling methods that randomly target lysine or cysteine residues often produce heterogeneous conjugates with limited reproducibility. Conventional site-specific conjugation approaches, which typically modify only the N- or C-terminus, may also be insufficient to achieve the desired functionalities.

View Article and Find Full Text PDF

Protocol for live-cell calcium imaging of human lung microvascular endothelial vessel-on-a-chip model.

STAR Protoc

September 2025

Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Pulmonary Medicine, Cincinnati Children's Hospital Medical C

Calcium signaling is crucial for endothelial cell homeostasis. Alterations in intracellular calcium levels due to shear stress are linked to vascular dysfunction and diseases. Here, we present a protocol to perform live calcium imaging by using a live calcium indicator on human lung endothelial cells subjected to shear stress in a commercially available microfluidic device (Ibidi Luer VI).

View Article and Find Full Text PDF