Publications by authors named "Markus Rehm"

Ferroptosis and apoptosis are widely considered to be independent cell death modalities. Ferroptotic cell death is a consequence of insufficient radical detoxification and progressive lipid peroxidation, which is counteracted by glutathione peroxidase-4 (GPX4). Apoptotic cell death can be triggered by a wide variety of stresses, including oxygen radicals, and can be suppressed by anti-apoptotic members of the BCL-2 protein family.

View Article and Find Full Text PDF

Toxicological test methods generate raw data and provide instructions on how to use these to determine a final outcome such as a classification of test compounds as hits or non-hits. The data processing pipeline provided in the test method description is often highly complex. Usually, multiple layers of data, ranging from a machine-generated output to the final hit definition, are considered.

View Article and Find Full Text PDF

The Bcl-2 family controls apoptosis by direct interactions of pro- and anti-apoptotic proteins. The principle mechanism is binding of the BH3 domain of pro-apoptotic proteins to the hydrophobic groove of anti-apoptotic siblings, which is therapeutically exploited by approved BH3-mimetic anti-cancer drugs. Evidence suggests that also the transmembrane domain (TMD) of Bcl-2 proteins can mediate Bcl-2 interactions.

View Article and Find Full Text PDF

Programmed cell death, in particular apoptosis, is essential during development and tissue homeostasis, and also is the primary strategy to induce cancer cell death by cytotoxic therapies. Precision therapeutics targeting TRAIL death receptors are being evaluated as novel anti-cancer agents, while in parallel highly specific proteasome inhibitors have gained approval as drugs. TRAIL-dependent signalling and proteasomal control of cellular proteostasis are intricate processes, and their interplay can be exploited to enhance therapeutic killing of cancer cells in combination therapies.

View Article and Find Full Text PDF

This observational study focuses on the characteristics and survival of patients taken off of the liver transplant waiting list. Assessment of post-delisting survival and a frequent follow-up of patients after delisting are important keys to improve the survival rate of patients with liver failure after being delisted. Within this study, delisted liver transplant candidates were divided into the following groups: (1) "too good" (54%) or (2) "too sick" (22%) for transplantation, (3) adherence issues (12%) or (4) therapy goal changed (11%).

View Article and Find Full Text PDF

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions.

View Article and Find Full Text PDF

Established prognostic tests based on limited numbers of transcripts can identify high-risk breast cancer patients, yet are approved only for individuals presenting with specific clinical features or disease characteristics. Deep learning algorithms could hold potential for stratifying patient cohorts based on full transcriptome data, yet the development of robust classifiers is hampered by the number of variables in omics datasets typically far exceeding the number of patients. To overcome this hurdle, we propose a classifier based on a data augmentation pipeline consisting of a Wasserstein generative adversarial network (GAN) with gradient penalty and an embedded auxiliary classifier to obtain a trained GAN discriminator (T-GAN-D).

View Article and Find Full Text PDF

Background: Degradation of the endothelial protective glycocalyx layer during COVID-19 infection leads to shedding of major glycocalyx components. These circulating proteins and their degradation products may feedback on immune and endothelial cells and activate molecular signaling cascades in COVID-19 associated microvascular injury. To test this hypothesis, we measured plasma glycocalyx components in patients with SARS-CoV-2 infection of variable disease severity and identified molecular signaling networks activated by glycocalyx components in immune and endothelial cells.

View Article and Find Full Text PDF

We live in an unprecedented time in oncology. We have accumulated samples and cases in cohorts larger and more complex than ever before. New technologies are available for quantifying solid or liquid samples at the molecular level.

View Article and Find Full Text PDF

The endothelial glycocalyx maintains vascular structure and may be subject to shedding during inflammation and also during high-intensive exercise. There are no studies on shedding during ultra-endurance exercise. The "Yukon Arctic Ultra" (YAU) is one of the longest and coldest ultramarathons and its impact on glycocalyx shedding was investigated.

View Article and Find Full Text PDF

This paper investigates the effects of different instructional approaches (problem-based vs. direct instructional) on student teachers' analysis of practice when using authentic representations of practice in teacher education. We assigned 638 student teachers from 21 equivalent teacher education courses to one of the two conditions.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) patients are notoriously difficult to treat and ultimately all succumb to disease. This unfortunate scenario motivates research into better characterizing and understanding this disease, and into developing novel research tools by which potential novel therapeutics and treatment options initially can be evaluated pre-clinically. Here, we provide a concise overview of glioblastoma epidemiology, disease classification, the challenges faced in the treatment of glioblastoma and current novel treatment strategies.

View Article and Find Full Text PDF

Two genomes regulate the energy metabolism of eukaryotic cells: the nuclear genome, which codes for most cellular proteins, and the mitochondrial genome, which, together with the nuclear genome, coregulates cellular bioenergetics. Therefore, mitochondrial genome variations can affect, directly or indirectly, all energy-dependent cellular processes and shape the metabolic state of the organism. This review provides a current and up-to-date overview on how codependent these two genomes are, how they appear to have coevolved, and how variations within the mitochondrial genome might be associated with the manifestation of metabolic diseases.

View Article and Find Full Text PDF

Protein misfolding or unfolding and the resulting endoplasmic reticulum (ER) stress frequently occur in highly proliferative tumors. How tumor cells escape cell death by apoptosis after chronic ER stress remains poorly understood. We have investigated in both two-dimensional (2D) cultures and multicellular tumor spheroids (MCTSs) the role of caspase-8 inhibitor cFLIP as a regulator of the balance between apoptosis and survival in colon cancer cells undergoing ER stress.

View Article and Find Full Text PDF

Prolonged ER stress and the associated unfolded protein response (UPR) can trigger programmed cell death. Studies in cancer cell lines demonstrated that the intracellular accumulation of TRAIL receptor-2 (TRAIL-R2) and the subsequent activation of caspase-8 contribute significantly to apoptosis induction upon ER stress. While this might motivate therapeutic strategies that promote cancer cell death through ER stress-induced caspase-8 activation, it could also support the unwanted demise of non-cancer cells.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most malignant and aggressive form of glioma and is associated with a poor survival rate. Latest generation Tumour Necrosis Factor Related Apoptosis-Inducing Ligand (TRAIL)-based therapeutics potently induce apoptosis in cancer cells, including GBM cells, by binding to death receptors. However, the blood-brain barrier (BBB) is a major obstacle for these biologics to enter the central nervous system (CNS).

View Article and Find Full Text PDF

Extrinsic apoptosis relies on TNF-family receptor activation by immune cells or receptor-activating drugs. Here, we monitored cell cycle progression at a resolution of minutes to relate apoptosis kinetics and cell-to-cell heterogeneities in death decisions to cell cycle phases. Interestingly, we found that cells in S phase delay TRAIL receptor-induced death in favour of mitosis, thereby passing on an apoptosis-primed state to their offspring.

View Article and Find Full Text PDF

Cancer cells' ability to inhibit apoptosis is key to malignant transformation and limits response to therapy. Here, we performed multiplexed immunofluorescence analysis on tissue microarrays with 373 cores from 168 patients, segmentation of 2.4 million individual cells, and quantification of 18 cell lineage and apoptosis proteins.

View Article and Find Full Text PDF

Introduction: Due to the coronavirus disease 19 (COVID-19) pandemic, multiple measures have been implemented including social distancing and curfews. Both the disease and measures might cause stress, particularly in persons at risk, such as liver transplant (LT) recipients. Here, we evaluated the impact on psychosocial well-being of LT recipients.

View Article and Find Full Text PDF

Cancer cells that are resistant to Bax/Bak-dependent intrinsic apoptosis can be eliminated by proteasome inhibition. Here, we show that proteasome inhibition induces the formation of high molecular weight platforms in the cytosol that serve to activate caspase-8. The activation complexes contain Fas-associated death domain (FADD) and receptor-interacting serine/threonine-protein kinase 1 (RIPK1).

View Article and Find Full Text PDF

Activation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options.

View Article and Find Full Text PDF

Due to the absence of curative treatments for glioblastoma (GBM), we assessed the efficacy of single and combination treatments with a translationally relevant 2nd generation TRAIL-receptor agonist (IZI1551) and the blood-brain barrier (BBB) permeant proteasome inhibitor marizomib in a panel of patient-derived glioblastoma cell lines. These cells were cultured using protocols that maintain the characteristics of primary tumor cells. IZI1551+marizomib combination treatments synergistically induced apoptotic cell death in the majority of cases, both in 2D, as well as in 3D spheroid cultures.

View Article and Find Full Text PDF

Glioma stem cells (GSCs) are tumour initiating cells which contribute to treatment resistance, temozolomide (TMZ) chemotherapy and radiotherapy, in glioblastoma (GBM), the most aggressive adult brain tumour. A major contributor to the uncontrolled tumour cell proliferation in GBM is the hyper activation of cyclin-dependent kinases (CDKs). Due to resistance to standard of care, GBMs relapse in almost all patients.

View Article and Find Full Text PDF