98%
921
2 minutes
20
Oenococcus oeni and Lactiplantibacillus plantarum are major wine-associated lactic acid bacteria that positively influence wine by carrying out malolactic fermentation. O. oeni is the most widely used commercial starter in winemaking because of its fast and efficient malate metabolism capacity under harsh wine conditions. To date, very little is known about the specific molecular mechanism underlying the differences in malate metabolism between O. oeni and L. plantarum under harsh wine conditions. Therefore, in this study, the functions of genes encoding malic enzyme (ME) and malolactic enzyme (MLE) under acid stress in O. oeni and L. plantarum, previously described to have the ability to direct malate metabolism, were comparatively verified through genetic manipulation in L. plantarum. Results showed that the MLE was the only enzyme responsible for direct malate metabolism under acid stress in O. oeni and L. plantarum. In addition, the MLEs in O. oeni and L. plantarum were positively related to acid tolerance by metabolizing malate and increasing the medium pH. Furthermore, the MLE in O. oeni exhibited significantly higher malate metabolism activity than that in L. plantarum under acid stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.111235 | DOI Listing |
Ecotoxicol Environ Saf
September 2025
Chongqing Ecological and Environmental Monitoring Center, Chongqing 401147, PR China. Electronic address:
Plastics degradation generates microplastics (MPs), posing a risk to soil function and organisms. Currently, the impact of MPs derived from different polymers remains poorly understood. In this study, the effects of three polymers (polypropylene (PP), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT)) were investigated at environmentally relevant levels (0, 0.
View Article and Find Full Text PDFAquac Nutr
August 2025
Guangdong Provincial Key Laboratories of Marine Biotechnology, Shantou University, Shantou 515063, China.
In mammals, cholesterol accumulation in tissues often results in health damage, such as oxidative stress. In contrast, the adverse effects of cholesterol accumulation on the physiological health of fish remain largely unexplored. The present study investigated the impacts of cholesterol accumulation on oxidative stress and the potential mechanisms involved in Nile tilapia ().
View Article and Find Full Text PDFFront Plant Sci
August 2025
State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
Introduction: Shikimic acid, as a critical precursor for oseltamivir synthesis in antiviral pharmaceuticals, faces escalating global demand. Although leaves have emerged as a promising natural source of shikimic acid owing to their exceptional content of this valuable compound and substantial biomass production capacity, the molecular mechanisms underlying its biosynthesis and downstream metabolic regulation in leaves remain largely unknown.
Methods: Here, the concentration of shikimic acid in 33 clones were assessed, and 1# (referred as HS) had the highest level.
Biology (Basel)
August 2025
College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China.
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar 'Zhongmai 175' was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic acid in root exudates and significantly increased total root length in 'Zhongmai 175'.
View Article and Find Full Text PDFBiology (Basel)
July 2025
Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571700, China.
Marek's disease (MD), induced by the highly contagious Marek's disease virus (MDV), remains a significant challenge to global poultry health despite extensive vaccination efforts. This study employed integrated transcriptomic and metabolomic analyses to investigate liver responses in naturally MDV-infected Wenchang chickens during late infection stages. RNA sequencing identified 959 differentially expressed genes (DEGs) between the infected and uninfected groups.
View Article and Find Full Text PDF