98%
921
2 minutes
20
Telomere shortening is usually considered a biomarker of ageing. Harmful alcohol use promotes accelerated biological ageing and alcohol use disorders (AUDs) are associated with short telomere length (TL). This study was conducted to examine the relationship of TL to AUD and determine whether single nucleotide polymorphisms (SNPs) in TERC and TERT modulate this association. For this purpose, we genotyped TERC SNPs rs2293607, rs12696304, and rs16847897 and TERT SNPs rs2735940, rs2736100, and rs2736098 in 308 male patients with AUD and 255 sex-matched healthy controls and measured TL in a subset of 99 patients and 99 controls paired by age and smoking status. Our results showed that the mean TL was shorter in patients with AUD than in controls. The area under the ROC curve was 0.70 (P < 0.001). The GG genotype of TERC rs2293607 was more common among patients with AUD than among controls (9.8% vs. 5.1%; P = 0.038). No difference was found for the other SNPs. Carriers of the GG genotype of rs2293607 had shorter telomeres than did allele A carriers. In conclusion, patients with AUD had shorter telomeres. Genetic susceptibility to telomere shortening through the rs2293607 SNP is associated with a greater risk of AUD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mad.2022.111693 | DOI Listing |
Psychoneuroendocrinology
September 2025
University of California, Irvine, USA; John Hopkins University, USA.
Age related diseases present disproportionately among African Americans and have been tied to broad social inequalities and accompanying stress. Yet, there is considerable variability among African Americans in susceptibility, highlighting potential connections to both intersectionality and stress-related biological processes. A growing body of research links exposure to racism and discrimination to telomere length (TL)-an indicator of biological aging that is increasingly implicated in explaining stress-related racial health disparities.
View Article and Find Full Text PDFClinics (Sao Paulo)
September 2025
School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Hunan, China. Electronic address:
Objective: This study aimed to investigate the causal relationship between Telomere Length (TL) and Autoimmune Thyroid Disease (AITD) in Europeans using Mendelian Randomization (MR).
Methods: Single nucleotide polymorphisms associated with TL and AITD were obtained from genome-wide association studies. MR analysis was conducted using inverse variance weighted as the primary method.
Aging Dis
August 2025
Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
Giant cell arteritis (GCA) is a complex inflammatory disease affecting individuals over 50 suggesting a strong link with aging-related immune and vascular changes. However, the precise mechanisms underlying this age-related susceptibility remain poorly understood. Considering the relevance of aging in GCA, genetic factors influencing biological aging markers, such as telomere shortening and epigenetic age acceleration (EAA), might also contribute to its development.
View Article and Find Full Text PDFBiogerontology
September 2025
Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 70800, Ostrava-Poruba, Czech Republic.
The circadian rhythm is a key biological mechanism that aligns organisms' physiological processes with Earth's 24-h light-dark cycle, crucial for cellular and tissue homeostasis. Disruption of this system is linked to accelerated aging and age-related diseases. Central to circadian regulation is the CLOCK protein, which controls gene transcription related to tissue homeostasis, cellular senescence, and DNA repair.
View Article and Find Full Text PDFCurr Genet
September 2025
Department of Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden.
Telomerase plays an important role in sustaining eukaryotic linear chromosomes, as elongation of telomeres is needed to counterbalance the shortening occurring in each replication round. Nevertheless, in telomerase-deficient cells, Alternative Lengthening of Telomeres (ALT) pathways can maintain telomeres by employing recombination-based mechanisms. In the budding yeast Naumovozyma castellii, effective activation of the ALT pathway leads to bypass of senescence and supports long-term growth.
View Article and Find Full Text PDF