Ruthenium(II)-Cyclopentadienyl-Derived Complexes as New Emerging Anti-Colorectal Cancer Drugs.

Pharmaceutics

Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colorectal cancer (CRC) is one of the most common malignancies and one of the leading causes of cancer-related death worldwide, urging the need for new and more efficient therapeutic approaches. Ruthenium complexes have emerged as attractive alternatives to traditional platinum-based compounds in the treatment of CRC. This work aims to evaluate anti-CRC properties, as well as to identify the mechanisms of action of ruthenium complexes with the general formula [Ru(η-CHR)(PPh)(4,4'-R'-2,2'-bipyridine)][CFSO], where R = CH, CHO or CHOH and R' = H, CH, CHOH, or dibiotin ester. The complexes (Ru 1-7) displayed high bioactivity, as shown by low IC concentrations against CRC cells, namely, RKO and SW480. Four of the most promising ruthenium complexes (Ru 2, 5-7) were phenotypically characterized and were shown to inhibit cell viability by decreasing cell proliferation, inducing cell cycle arrest, and increasing apoptosis. These findings were in accordance with the inhibition of MEK/ERK and PI3K/AKT signaling pathways. Ruthenium complexes also led to a decrease in cellular clonogenic ability and cell migration, which was associated with the disruption of F-actin cytoskeleton integrity. Here, we demonstrated that ruthenium complexes, especially Ru7, have a high anticancer effect against CRC cells and are promising drugs to be used as a new therapeutical strategy for CRC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228117PMC
http://dx.doi.org/10.3390/pharmaceutics14061293DOI Listing

Publication Analysis

Top Keywords

ruthenium complexes
20
crc cells
8
complexes
6
crc
5
ruthenium
5
rutheniumii-cyclopentadienyl-derived complexes
4
complexes emerging
4
emerging anti-colorectal
4
anti-colorectal cancer
4
cancer drugs
4

Similar Publications

An interesting ruthenium(III) complex, -[Ru(HL)Cl(PPh)], has been synthesized using a redox-active tetradentate bis-azo diamine ligand (HL). This complex represents the first example of a structurally robust, air- and moisture-stable coordination compound featuring a redox non-innocent ligand that provides a unique N4 donor set comprising both strong π-acidic (azo) and σ-donating (amido) groups. The complex has been comprehensively characterized by elemental analysis, various spectroscopic techniques, and single-crystal X-ray diffraction (SCXRD) studies.

View Article and Find Full Text PDF

This study comprehensively analyses two new ruthenium(III) complexes, [RuCl(Nic)][(CH)NH]DMF, 1, and [RuCl(3-HPA)][3-HHPA](EtOH), 2, (where Nic = nicotinic acid (vitamin B3), 3-HPA = anion of a 3-hydroxypicolinic acid), as potential antimicrobial agents, highlighting their physicochemical properties, nanoparticle formation, and cytotoxic activity. The complexes were fully characterised by a single crystal X-ray diffraction technique, Fourier-transform infrared, energy-dispersive X-ray, and electron paramagnetic resonance spectroscopies. The synthesis of micro- and nanoparticles (NPs) of these complexes was performed using the liquid anti-solvent crystallisation method.

View Article and Find Full Text PDF

A cubic phase with composition MgRu (tetra-tetra-contamagnesium hepta-ruthenium) was obtained during high-pressure sinter-ing of a mixture with an initial chemical composition of MgRuB. MgRu has space-group symmetry 43 and adopts the Mg Pt type of structure, which is categorized as one of the two structural types identified in complex compounds.

View Article and Find Full Text PDF

Platinum-group metal half-sandwich complexes are considered to be potential replacements of the clinically widely used platins which have several side effects and tend to cause resistance to develop. In our previous works, we used a range of 2-pyridyl-substituted N- and C-glycosyl heterocycles as N,N-chelating ligands to prepare ruthenium(II), osmium(II), iridium(III) and rhodium(III) polyhapto arene/arenyl half-sandwich complexes. Some of these complexes, particularly with the C-glucopyranosyl isoxazole derived ligand in its O-perbenzoylated form, exhibited greater anticancer efficiency than cisplatin and had minimal or negligible effects on non-transformed fibroblasts.

View Article and Find Full Text PDF

Cu/Ru Relay Catalysis Enables Functionalization of Allenic Alcohols with Stereodivergence and Skeleton Diversity.

J Am Chem Soc

August 2025

Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.

The stereodivergent synthesis of structurally complex molecules bearing multiple stereochemical elements represents a pivotal challenge in modern synthetic chemistry, particularly for bioactive compounds, where stereochemical nuances dictate pharmacological profiles. While stereodivergent dual catalysis has advanced full access to stereoisomers with stereogenic centers, the integration of stereodefined alkenes into chiral molecules with both stereochemical and skeletal diversification remains elusive. In this study, we report stereo- and skeleton-divergent access to chiral fluorinated -heterocycles with comprehensive stereocontrol of [(,), (,), (,), (,)] and [(,), (,), (,), (,)] enabled by a bimetallic Cu/Ru relay catalytic system, featuring redox-neutral efficiency and atom/step economy.

View Article and Find Full Text PDF