98%
921
2 minutes
20
Fibers and yarns are part of everyday life. So far, fibers that are also used pharmaceutically have mainly been produced by electrospinning. The common use of spinning oils and the excipients they contain, in connection with production by melt extrusion, poses a regulatory challenge for pharmaceutically usable fibers. In this publication, a newly developed small-scale direct-spinning melt extrusion system is described, and the pharmaceutically useful polyvinyl filaments produced with it are characterized. The major parts of the system were newly developed or extensively modified and manufactured cost-effectively within a short time using rapid prototyping (3D printing) from various materials. For example, a stainless-steel spinneret was developed in a splice design for a table-top melt extrusion system that can be used in the pharmaceutical industry. The direct processing of the extruded fibers was made possible by a spinning system developed called Spinning-Rosi, which operates continuously and directly in the extrusion process and eliminates the need for spinning oils. In order to prevent instabilities in the product, further modifications were also made to the process, such as a the moisture encapsulation of the melt extrusion line at certain points, which resulted in a bubble-free extrudate with high tensile strength, even in a melt extrusion line without built-in venting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228848 | PMC |
http://dx.doi.org/10.3390/pharmaceutics14061229 | DOI Listing |
AAPS PharmSciTech
September 2025
Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
Pediatric neuropathy poses significant challenges in pain management due to the limited availability of approved pharmacological options. Gabapentin, commonly used for neuropathic pain, offers therapeutic potential but necessitates careful dosing due to its variable bioavailability. This study investigates the integration of Hot Melt Extrusion and Fused Deposition Modeling in the development of polycaprolactone-based implants for sustained release of Gabapentin.
View Article and Find Full Text PDFSci Bull (Beijing)
August 2025
Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
The northeastern (NE) Tibetan Plateau is extruding eastward at a rapid rate (∼15 mm a), but the role of the upper mantle in this process remains unclear. Early-Miocene primary melilitites from the leading edge of the extruding plateau provide critical insights into the upper mantle dynamics. Geochemical and Sr-Nd-Pb-Os isotopic data, supported by experimental melt comparisons, reveal that these melilitites originate from a hybrid source of CO-bearing mantle source, probably dominated by peridotite and pyroxenite/wehrlite lithologies.
View Article and Find Full Text PDFChemSusChem
August 2025
Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
Low-crystallinity propylene-ethylene copolymer (PEC) thermoplastics exhibit creep in the melt and semicrystalline states. To enhance creep resistance while maintaining reprocessability, dynamic covalent cross-links are introduced through one-step, radical-based reactive processing to create covalent adaptable networks (CANs). During reactive processing, it is essential to suppress β-scission of propylene repeat units.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland.
A group of renewable, unsaturated resins from itaconic acid, 1,8-octanediol, and succinic anhydride were synthesized in a non-solvent and non-catalyst melt polycondensation reaction. The study addresses the need for sustainable polymeric materials suitable for additive manufacturing by investigating the influence of synthesis parameters-namely itaconic acid content, reaction time, and temperature-on the properties of poly(octamethylene itaconate--succinate) (POItcSc). The Box-Behnken mathematical planning method was applied to optimize the reaction conditions.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile.
Improving the end-of-life performance of polylactic acid (PLA) for food packaging requires strategies that enhance biodegradability, solubility, and dispersibility without compromising essential material properties. PLA-based films were produced by melt extrusion using polyvinylpyrrolidone (PVP) as a hydrophilic modifier, aiming to enhance the water uptake and affinity of PLA, which may potentially lead to faster environmental degradation. Two PVPs with distinct molar masses at varying concentrations were used to investigate their effects on the structural, thermal, mechanical, optical, and barrier behavior of the films.
View Article and Find Full Text PDF