A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Metabolomic Profiling of Intra-Uterine Growth Restriction in Placenta and Cord Blood Points to an Impairment of Lipid and Energetic Metabolism. | LitMetric

A Metabolomic Profiling of Intra-Uterine Growth Restriction in Placenta and Cord Blood Points to an Impairment of Lipid and Energetic Metabolism.

Biomedicines

Unité Mixte de Recherche (UMR) MITOVASC, Structure Fédérative de Recherche (SFR) ICAT, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université d'Angers, F-49000 Angers, France.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(1) Background: Intrauterine growth restriction (IUGR) involves metabolic changes that may be responsible for an increased risk of metabolic and cardiovascular diseases in adulthood. Several metabolomic profiles have been reported in maternal blood and urine, amniotic fluid, cord blood and newborn urine, but the placenta has been poorly studied so far. (2) Methods: To decipher the origin of this metabolic reprogramming, we conducted a targeted metabolomics study replicated in two cohorts of placenta and one cohort of cord blood by measuring 188 metabolites by mass spectrometry. (3) Results: OPLS-DA multivariate analyses enabled clear discriminations between IUGR and controls, with good predictive capabilities and low overfitting in the two placental cohorts and in cord blood. A signature of 25 discriminating metabolites shared by both placental cohorts was identified. This signature points to sharp impairment of lipid and mitochondrial metabolism with an increased reliance on the creatine-phosphocreatine system by IUGR placentas. Increased placental insulin resistance and significant alteration of fatty acids oxidation, together with relatively higher phospholipase activity in IUGR placentas, were also highlighted. (4) Conclusions: Our results show a deep lipid and energetic remodeling in IUGR placentas that may have a lasting effect on the fetal metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220006PMC
http://dx.doi.org/10.3390/biomedicines10061411DOI Listing

Publication Analysis

Top Keywords

cord blood
16
iugr placentas
12
growth restriction
8
impairment lipid
8
lipid energetic
8
placental cohorts
8
blood
5
iugr
5
metabolomic profiling
4
profiling intra-uterine
4

Similar Publications