Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The identification of mechanisms to promote memory T (T) cells has important implications for vaccination and anti-cancer immunotherapy. Using a CRISPR-based screen for negative regulators of T cell generation in vivo, here we identify multiple components of the mammalian canonical BRG1/BRM-associated factor (cBAF). Several components of the cBAF complex are essential for the differentiation of activated CD8 T cells into T effector (T) cells, and their loss promotes T cell formation in vivo. During the first division of activated CD8 T cells, cBAF and MYC frequently co-assort asymmetrically to the two daughter cells. Daughter cells with high MYC and high cBAF display a cell fate trajectory towards T cells, whereas those with low MYC and low cBAF preferentially differentiate towards T cells. The cBAF complex and MYC physically interact to establish the chromatin landscape in activated CD8 T cells. Treatment of naive CD8 T cells with a putative cBAF inhibitor during the first 48 h of activation, before the generation of chimeric antigen receptor T (CAR-T) cells, markedly improves efficacy in a mouse solid tumour model. Our results establish cBAF as a negative determinant of T cell fate and suggest that manipulation of cBAF early in T cell differentiation can improve cancer immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9623036PMC
http://dx.doi.org/10.1038/s41586-022-04849-0DOI Listing

Publication Analysis

Top Keywords

cd8 cells
16
cbaf complex
12
cell fate
12
activated cd8
12
cells
11
cbaf
10
cells cbaf
8
daughter cells
8
cell
6
myc
5

Similar Publications

Nuclear glycine decarboxylase suppresses STAT1-dependent MHC-I and promotes cancer immune evasion.

EMBO J

September 2025

Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.

Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.

View Article and Find Full Text PDF

Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.

View Article and Find Full Text PDF

The colon exhibits higher propensity for tumour development than ileum. However, the role of immune microenvironment differences in driving this disparity remains unclear. Here, by comparing paired ileum and colon samples from patients with colorectal cancer (CRC) and healthy donors, we identified ileum-enriched CD160CD8 T cells with previously unrecognized characteristics, including resistance to terminal exhaustion and strong clonal expansion.

View Article and Find Full Text PDF

Type 1 regulatory cells suppress T-cell cytotoxicity to alleviate liver injury during acute hepatitis B virus infection in mice.

J Immunol

September 2025

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Qidong-Fudan Innovative Institution of Medical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

Hepatitis B virus (HBV) exclusively infects hepatocytes and produces large quantities of subviral particles containing its surface antigen (HBsAg). T cells play a central role in controlling HBV infection but can also mediate liver injury and contribute to disease progression. However, the mechanisms that regulate T-cell responses to eliminate the virus without causing immunopathology during acute HBV infection remain poorly defined.

View Article and Find Full Text PDF