98%
921
2 minutes
20
Supercapacitors are promising energy storage devices with high charging/discharging speeds and power densities. To improve their poor stability, we fabricated electrodes by integrating perovskite materials (LaSrMnCoO, LSMCO) possessing redox reaction ability with graphene nanoplatelets exhibiting good electronic properties. One of the resultant composites (L25G70) demonstrated high capacitance and excellent capacitance retention (95% after 5000 cycles). These results are superior to other electrodes (L50G45 and L75G20) containing a larger ratio of LSMCO, even L75G20 did not exhibit supercapacitor behavior after 3000 cycles. GN can induce structural distortion in LSMCO, thereby the high amount of adsorbed oxygen per lattice oxygen can explain the best electrochemical performance of L25G70, while structural collapse rationalized the failure of L75G20. The findings of this study demonstrated that the use of LSMCO can improve the cycling stability of supercapacitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203535 | PMC |
http://dx.doi.org/10.1038/s41598-022-14324-5 | DOI Listing |
Adv Healthc Mater
September 2025
Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.
The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Physics, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
We report the performance of solid-state ceramic supercapacitors (SSCs) based on a novel composite electrolyte comprising aluminum-doped lithium lanthanum titanate perovskite, LiLaTiAlO (Al-doped LLTO), and the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM BF). Rietveld refinement of X-ray diffraction data confirms the preservation of the tetragonal perovskite phase after Al substitution, indicating structural stability of the host lattice. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy further corroborate the successful incorporation of Al without forming secondary phases.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
Bacterial detection is crucial for accurate clinical diagnostics and effective environmental monitoring. Particularly, , a pathogenic bacterium, can cause a wide range of infections, including meningitis, bloodstream infections, pneumonia, urinary tract infections, and wound or surgical site infections. Herein, a polypyrrole (PPy) functionalized TiCT -tin dioxide nanoparticle (SnO NPs) nanocomposite-based hybrid capacitive electrode for the electrochemical detection of ATCC 700603 is developed.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Precise control of particle size, pore size distribution, and carbon layer spacing under green and low-energy conditions is critical for developing advanced carbon electrodes for supercapacitors and sodium-ion batteries (SIBs). Herein, we proposed a new strategy to prepare an MgAl bimetallic metal-organic framework (MOF) via a pre-ionization strategy, effectively avoiding harsh conditions and using organic solvents in hydrothermal synthesis. By fine-tuning the Mg/Al ratio and pyrolysis conditions, the particle size, pore size distribution and carbon layer spacing of rod porous carbon (RPC) were precisely adjusted.
View Article and Find Full Text PDF