98%
921
2 minutes
20
While simulated low-dose CT images and phantom studies cannot fully approximate subjective and objective effects of deep learning (DL) denoising on image quality, live animal models may afford this assessment. This study is to investigate the potential of DL in CT dose reduction on image quality compared to iterative reconstruction (IR).The upper abdomen of a live 4 year old sheep was scanned on a CT scanner at different exposure levels. Images were reconstructed using FBP and ADMIRE with 5 strengths. A modularized DL network with 5 modules was used for image reconstruction via progressive denoising. Radiomic features were extracted from a region over the liver. Concordance correlation coefficient (CCC) was applied to quantify agreement between any two sets of radiomic features. Coefficient of variation was calculated to measure variation in a radiomic feature series. Structural similarity index (SSIM) was used to measure the similarity between any two images. Diagnostic quality, low-contrast detectability, and image texture were qualitatively evaluated by two radiologists. Pearson correlation coefficient was computed across all dose-reconstruction/denoising combinations.A total of 66 image sets, with 405 radiomic features extracted from each, are analyzed. IR and DL can improve diagnostic quality and low-contrast detectability and similarly modulate image texture features. In terms of SSIM, DL has higher potential in preserving image structure. There is strong correlation between SSIM and radiologists' evaluations for diagnostic quality (0.559) and low-contrast detectability (0.635) but moderate correlation for texture (0.313). There is moderate correlation between CCC of radiomic features and radiologists' evaluation for diagnostic quality (0.397), low-contrast detectability (0.417), and texture (0.326), implying that improvement of image features may not relate to improvement of diagnostic quality.DL shows potential to further reduce radiation dose while preserving structural similarity, while IR is favored by radiologists and more predictably alters radiomic features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ac7999 | DOI Listing |
J Cancer Res Clin Oncol
September 2025
Department of Radiology, Guizhou Provincial People's Hospital, No. 83 East Zhongshan Road, Guiyang, 550002, Guizhou, China.
Purpose: Targeted therapy with lenvatinib is a preferred option for advanced hepatocellular carcinoma, however, predicting its efficacy remains challenging. This study aimed to build a nomogram integrating clinicoradiological indicators and radiomics features to predict the response to lenvatinib in patients with hepatocellular carcinoma.
Methods: This study included 211 patients with hepatocellular carcinoma from two centers, who were allocated into the training (107 patients), internal test (46 patients) and external test set(58 patients).
J Immunother Cancer
September 2025
CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
Neoadjuvant immunochemotherapy (nICT) has demonstrated significant potential in improving pathological response rates and survival outcomes for patients with locally advanced esophageal squamous cell carcinoma (ESCC). However, substantial interindividual variability in therapeutic outcomes highlights the urgent need for more precise predictive tools to guide clinical decision-making. Traditional biomarkers remain limited in both predictive performance and clinical feasibility.
View Article and Find Full Text PDFEur J Radiol
September 2025
Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China. Electronic address:
Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.
Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.
Ann Surg Oncol
September 2025
HepatoBiliaryPancreatic Surgery, AOU Careggi, Department of Experimental and Clinical Medicine (DMSC), University of Florence, Florence, Italy.
Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.
Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.
Int J Surg
September 2025
Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
Background: Precise preoperative discrimination of invasive lung adenocarcinoma (IA) from preinvasive lesions (adenocarcinoma in situ [AIS]/minimally invasive adenocarcinoma [MIA]) and prediction of high-risk histopathological features are critical for optimizing resection strategies in early-stage lung adenocarcinoma (LUAD).
Methods: In this multicenter study, 813 LUAD patients (tumors ≤3 cm) formed the training cohort. A total of 1,709 radiomic features were extracted from the PET/CT images.