Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proper understanding of solid polymer electrolyte-electrode interfacial layer formation and its implications on cell performance is a vital step toward realizing practical solid-state lithium-ion batteries. At the same time, probing these solid-solid interfaces is extremely challenging as they are buried within the electrochemical system, thereby efficiently evading exposure to surface-sensitive spectroscopic methods. Still, the probing of interfacial degradation layers is essential to render an accurate picture of the behavior of these materials in the vicinity of their electrochemical stability limits and to complement the incomplete picture gained from electrochemical assessments. In this work, we address this issue in conjunction with presenting a thorough evaluation of the electrochemical stability window of the solid polymer electrolyte poly(ε-caprolactone):lithium bis(trifluoromethanesulfonyl)imide (PCL:LiTFSI). According to staircase voltammetry, the electrochemical stability window of the polyester-based electrolyte was found to span from 1.5 to 4 V vs Li/Li. Subsequent decomposition of PCL:LiTFSI outside of the stability window led to a buildup of carbonaceous, lithium oxide and salt-derived species at the electrode-electrolyte interface, identified using postmortem spectroscopic analysis. These species formed highly resistive interphase layers, acting as major bottlenecks in the SPE system. Resistance and thickness values of these layers at different potentials were then estimated based on the impedance response between a lithium iron phosphate reference electrode and carbon-coated working electrodes. Importantly, it is only through the combination of electrochemistry and photoelectron spectroscopy that the full extent of the electrochemical performance at the limits of electrochemical stability can be reliably and accurately determined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247984PMC
http://dx.doi.org/10.1021/acsami.2c02118DOI Listing

Publication Analysis

Top Keywords

electrochemical stability
20
solid polymer
12
stability window
12
polymer electrolyte-electrode
8
electrochemical
8
vicinity electrochemical
8
stability limits
8
stability
6
dissecting solid
4
electrolyte-electrode interface
4

Similar Publications

Developing efficient, low-cost catalysts for oxygen reduction and evolution reactions (ORR and OER) is key to advancing metal-air batteries and regenerative fuel cells. In this study, nitrogen-doped binary metal (Mn and Ni) oxides (N-BMOs) and Pt-decorated N-BMOs were synthesised using three methods and tested as ORR and OER catalysts in alkaline media. Their physicochemical properties were characterised by XRD, N-sorption, TEM, and XPS, while their electrochemical performance was evaluated using voltammetry and impedance spectroscopy.

View Article and Find Full Text PDF

Enhancement of the performance of lithium-ion batteries is a critical strategy for addressing the challenges associated with cost and raw materials. By doping boron (B), aluminum (Al), and aluminum/boron (Al/B) utilizing the sol-gel method, we demonstrate a substantial improvement in the cycling performance of Ni-rich lithium nickel manganese cobalt oxide (NMC) as an electrode. While the initial specific capacitance of the doped samples may be lower than that of the pristine NMC, these samples demonstrate a notable increase in specific capacitance during subsequent cycles, reaching a peak around the 10 cycle and nearing the highest specific capacitance observed in NMC cathodes.

View Article and Find Full Text PDF

To expand the application scope of carbon steel, imparting superhydrophobicity to its surface offers an effective strategy to overcome its inherently poor corrosion resistance. However, in marine environments, conventional superhydrophobic coatings often suffer from limited mechanical durability and inadequate long-term corrosion protection. In this study, a durable superhydrophobic bilayer coating composed of PDMS-MWCNTs (top layer) and PDMS (bottom layer) was developed to address these challenges.

View Article and Find Full Text PDF

Electrocatalytic water oxidation with bioinspired cubane-type Co complexes.

Dalton Trans

September 2025

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, Ciudad de México, 04510, Mexico.

Synthesis, characterization, and electrocatalytic water oxidation studies of the cubane-type complexes [(μ-)CoCl(MeOH)] (1) and [(μ-)CoCl(MeOH)] (2) are herein reported. Cubanes 1 and 2 were obtained in high yields under mild conditions by self-assembly of the ligands = 1--2-benzimidazolylmethanol and = 1-methyl-2-benzimidazolylmethanol with CoCl·6HO in basic methanolic solution. Both compounds feature a cubane-type structure in which the central {CoO} units are built by four Co centers coordinated by alkoxide-bridged oxygen and nitrogen atoms from the deprotonated ligands and stabilized by MeOH molecules and chloride ions.

View Article and Find Full Text PDF

Self-assembled DNA nanostructures have been popularly used to develop DNA-based electrochemical sensors by exploiting the nanoscale positioning capability of DNA origami. However, the impact of the electric field on the structural stability of the DNA origami framework and the activity of carried DNA probes remains to be explored. Herein, we employ DNA origami as structural frameworks for reversible DNA hybridization, and develop a single-molecule fluorescence imaging method to quantify electric field effects on DNA conformation and hybridization properties at the single-molecule level.

View Article and Find Full Text PDF