Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Before releasing survey data, statistical agencies usually perturb the original data to keep each survey unit's information confidential. One significant concern in releasing survey microdata is identity disclosure, which occurs when an intruder correctly identifies the records of a survey unit by matching the values of some key (or pseudo-identifying) variables. We examine a recently developed post-randomization method for a strict control of identification risks in releasing survey microdata. While that procedure well preserves the observed frequencies and hence statistical estimates in case of simple random sampling, we show that in general surveys, it may induce considerable bias in commonly used survey-weighted estimators. We propose a modified procedure that better preserves weighted estimates. The procedure is illustrated and empirically assessed with an application to a publicly available US Census Bureau data set.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041905 | PMC |
http://dx.doi.org/10.1080/02664763.2020.1732310 | DOI Listing |