Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

C cyclacenes exhibit strong bond-alternation in their equilibrium geometry. In the two equivalent geometries, the system keeps an essentially closed-shell character. The two energy minima are separated by a transition state suppressing the bond-alternation, where the wave function is strongly diradical. This paper discusses the physical factors involved in this energy difference and possible evaluations of the barrier height. The barrier given as the energy difference between the restricted density functional theory (DFT)/B3LYP for the equilibrium and the broken symmetry DFT/B3LYP of the transition state is either negative or small, in contradiction with the most reliable Wave Function Theory calculations. The minimal (two electrons in two molecular orbitals) Complete Active Space self-consistent field (CASSCF) overestimates the barrier, and the subsequent second-order perturbation cancels it. Due to the collective character of the spin-polarization effect, it is necessary to perform a full π CASSCF + second-order perturbation to reach a reasonable value of the barrier, but this type of treatment cannot be applied to large molecules. DFT procedures treating on an equal foot the closed-shell and open-shell geometries have been explored, such as Mixed-Reference Spin-Flip Time-dependent-DFT and a new spin-decontamination proposal, namely, DFT-dressed configuration interaction, but the results still depend on the density functional. M06-2X without or with spin-decontamination gives the best agreement with the accurate wave function results.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0090129DOI Listing

Publication Analysis

Top Keywords

transition state
12
wave function
12
barrier height
8
energy difference
8
density functional
8
second-order perturbation
8
barrier
5
difficulty evaluation
4
evaluation barrier
4
height open-shell
4

Similar Publications

Background: Frailty is a dynamic condition that may affect mental health. This study aimed to investigate the associations of frailty and its changes with the risks of depressive symptoms across multiple regions in aging populations.

Methods: Data were drawn from five cohort studies in the United States, England, Europe, China, and Mexico.

View Article and Find Full Text PDF

Unusual Core-Ionization Pathways in Hydrated Na: A Theoretical KV Study.

Inorg Chem

September 2025

Laboratoire de Chimie Physique Matière et Rayonnement (LCPMR), CNRS UMR 7614, Sorbonne Université (SU), 4 place Jussieu, Paris 75005, France.

The one-photon KV X-ray photoelectron spectra of Na and its hydrated clusters [Na(HO)] ( = 1-6) are dominated by the unusual 1s → 1s3s transition. KV spectroscopy also reveals a pronounced redistribution of the 1s → 1s3p transition cross sections, directly correlated with hydration number and molecular arrangement. Its intrinsic two-step nature, involving simultaneous core ionization and core excitation, enables detailed investigation of solvation-induced electronic structure changes, including dipole-forbidden excitations, core-valence charge transfer, and subtle 1s → V energy shifts.

View Article and Find Full Text PDF

In recent years Quantum Computing prominently entered in the field of Computational Chemistry, importing and transforming computational methods and ideas originally developed within other disciplines, such as Physics, Mathematics and Computer Science into algorithms able to estimate quantum properties of atoms and molecules on present and future quantum devices. An important role in this contamination process is attributed to Quantum Information techniques, having the 2-fold role of contributing to the analysis of electron correlation and entanglements and guiding the construction of wave function variational ansatzes for the Variational Quantum Eigensolver technique. This paper introduces the tool SparQ (Sparse Quantum state analysis), designed to efficiently compute fundamental quantum information theory observables on post-Hartree-Fock wave functions sparse in their definition space.

View Article and Find Full Text PDF

The Essence of Nature Can be the Simplest (6)-Lifespan: Determined by Extracellular Fenton Chemistry.

Chem Biodivers

September 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & Yunnan Key Laboratory of Basic Research and Innovative Application for Green Biological Production, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunm

Understanding the determinants of lifespan is a central objective in biology. Lifespan is shaped by dynamic, stage-specific changes in metabolism, energy allocation, and genome integrity. Heart rate serves as a physiological marker that reflects both life stage and metabolic state.

View Article and Find Full Text PDF

Zanubrutinib is a next-generation covalent Bruton tyrosine kinase (BTK) inhibitor designed to provide complete and sustained BTK occupancy for efficacy across disease-relevant tissues, with fewer off-target adverse events (AEs) than other covalent BTK inhibitors. In the phase 3 ASPEN study (BGB-3111-302), comparable efficacy and a favorable safety profile versus ibrutinib were demonstrated in patients with MYD88-mutated Waldenström macroglobulinemia (WM), leading to approval of zanubrutinib for patients with WM. BGB-3111-LTE1 (LTE1) is a long-term extension study to which eligible patients, including patients from comparator treatment arms, could enroll following participation in various parent studies of zanubrutinib to treat B-cell malignancies.

View Article and Find Full Text PDF