98%
921
2 minutes
20
Compartmentalized structures obtained in all-aqueous settings have shown promising properties as cell encapsulation devices, as well as reactors for trans-membrane chemical reactions. While most approaches focus on the preparation of spherical devices, advances on the production of complex architectures have been enabled by the interfacial stability conferred by emulsion systems, namely mild aqueous two-phase systems (ATPS), or non-equilibrated analogues. However, the application of non-spherical structures has mostly been reported while keeping the fabricated materials at a stable interface, limiting the free-standing character, mobility and transposition of the obtained structures to different setups. Here, the fabrication of self-standing, malleable and perfusable tubular systems through all-aqueous interfacial assembly is shown, culminating in the preparation of independent objects with stability and homogeneity after disruption of the polymer-based aqueous separating system. Those hollow structures can be fabricated with a variety of widths, and rapidly printed as long structures at flow rates of 15 mm s . The materials are used as compartments for cell culture, showcasing high cytocompatibility, and can be tailored to promote cell adhesion. Such structures may find application in fields that benefit from freeform tubular structures, including the biomedical field with, for example, cell encapsulation, and benchtop preparation of microfluidic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202200352 | DOI Listing |
Med Oncol
September 2025
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.
View Article and Find Full Text PDFBioimpacts
June 2025
Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
Optimal skin healing is a sophisticated, coordinated process involving cellular and molecular interactions. Disruptions in this process can result in chronic wounds, necessitating medical intervention, particularly when the damage surpasses the body's regenerative capabilities. In response, novel therapies, especially tissue engineering and stem cell treatments, have been devised to restore tissue architecture and maximum functionality.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Cell Therapy Center, The University of Jordan, 11942, Amman, Jordan.
Purpose: Breast cancer is the leading cause of cancer-related deaths among women. Chemotherapy faces challenges such as systemic toxicity and multidrug resistance. Advances in nanotechnology have led researchers to develop safer and more efficient cancer treatment methods.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
The development of biomimetic scaffolds that emulate the extracellular matrix (ECM) is critical for advancing cell-based therapies and tissue regeneration. This study reports the formulation of CHyCoGel, a novel injectable, ECM-mimetic hydrogel scaffold composed of chitosan, hyaluronic acid, chondroitin sulfate, and an amphiphilic stabilizer. CHyCoGel addresses key limitations of existing scaffolds, offering improved structural uniformity, injectability, and gelation suitable for cell encapsulation and minimally invasive delivery.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Physical Science and Technology, College of Energy, School of Optoelectronic Science and Engineering, Soochow University, Suzhou, 215000, P. R. China.
Polymer additives exhibit unique advantages in suppressing lead leaching from perovskite solar cells (PSCs). However, polymers tend to excessively aggregate in the perovskite film, which hinders comprehensive encapsulation and disrupts charge transport efficiency, degrading lead leakage inhibition and device performance. Herein, a polymer dynamic soft encapsulation strategy driven by molecular extrusion is introduced to mitigate lead leakage in PSCs, achieved through the incorporation of poly(propylene adipate) (PPA) as a multifunctional additive in the perovskite formulation.
View Article and Find Full Text PDF