Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Chemical modification of Oxadiazole may lead to a potent therapeutic agent. A series of novel 5-pyrazyl-2-sulfanyl-1, 3, 4-oxadiazole derivatives (5ag) have been synthesised utilising pyrazinoic acid as a precursor. The new oxadiazole compounds were docked against potential targets and evaluated for antibacterial and antitubercular activity.

Methods: The 5-pyrazyl-2-substituted sulfanyl-1, 3,4-oxadiazole derivatives (5a-g) were synthesized from the crucial intermediate 2-sulfanyl-5-pyrazyl-1, 3,4-oxadiazole (4), which was prepared by treating the 2-pyrazyl hydrazide with CS2 and pyridine. IR, HNMR, C, MS and elemental analyses were used to confirm the chemical structures.

Results: Antimicrobial activity was determined for each synthesized compound. Additionally, compounds were evaluated for antitubercular activity against the Mycobacterium Tuberculosis H37Rv strain. Compounds 5c, 5g, and 5a had a favourable antibacterial profile, while 5c and 5g (MIC = 25 g/ml) demonstrated potential antitubercular activity when compared to the other produced compounds. Molecular docking experiments using V-Life Science MDS 4.6 supplemented the biological data.

Conclusion: Each compound has been tested for antibacterial and antitubercular action against a variety of microorganism strains and exhibits considerable activity. Additionally, molecular docking analysis confirmed the experimental results by describing improved interaction patterns.

Download full-text PDF

Source
http://dx.doi.org/10.2174/2772434417666220609105755DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
novel 5-pyrazyl-2-sulfanyl-1
8
5-pyrazyl-2-sulfanyl-1 4-oxadiazole
8
4-oxadiazole derivatives
8
antibacterial antitubercular
8
antitubercular activity
8
design synthesis
4
synthesis anti-microbial
4
anti-microbial molecular
4
docking studies
4

Similar Publications

Through applying the hybridization technique, new coumarin derivatives (2-17) were prepared with substitution at coumarin C-3 utilizing various heterocyclic derivatives, aiming to afford multi-target carbonic anhydrases (CAs) IX/XII and topoisomerase II (Topo II) inhibitors with potent antiproliferative activity. Eight different cell lines were used to evaluate the growth inhibition percentages (GI%) of cancer cells determined by coumarin analogues 1-17. Analogues 16 and 17 had the most substantial cytotoxic effects, achieving mean GI% of 86.

View Article and Find Full Text PDF

Docking is a structure-based cheminformatics tool broadly employed in early drug discovery. Based on the tridimensional structure of the protein target, docking is used to predict the binding interactions between the protein and a ligand, estimate the corresponding binding affinity, or perform virtual screenings (VSs) to identify new active compounds. This study introduces the ligand B-factor index (LBI), a novel computational metric for prioritizing protein-ligand complexes for docking.

View Article and Find Full Text PDF

The control of dengue vector mosquitoes by utilizing plant-based eco-friendly larvicides is pivotal in suppressing the spread of dengue with minimum environmental toxicity. This study aimed to evaluate the larvicidal activity of nanoliposomes containing p-cresol and Myristica fragrans Houtt. essential oil (EO) against Aedes aegypti L.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is an aggressive malignancy with a poor prognosis. Abnormal expression of focal adhesion kinase (FAK) is closely linked to NSCLC progression, highlighting the need for effective FAK inhibitors in NSCLC treatment. In this study we conducted high-throughput virtual screening combined with cellular assays to identify potential FAK inhibitors for NSCLC treatment.

View Article and Find Full Text PDF

Targeted hotspot profiling reveals a functionally relevant mutation in bladder cancer.

Urol Oncol

September 2025

Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:

Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.

Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.

View Article and Find Full Text PDF