98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apt.16961 | DOI Listing |
Cancer Pathog Ther
September 2025
Department of Medical Oncology, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical Colle
Elife
September 2025
Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan.
Experiments on domestic chicks shed light on the links between brain lateralization and the left-to-right mental number line.
View Article and Find Full Text PDFFront Artif Intell
August 2025
Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.
Precision livestock farming increasingly relies on non-invasive, high-fidelity systems capable of monitoring cattle with minimal disruption to behavior or welfare. Conventional identification methods, such as ear tags and wearable sensors, often compromise animal comfort and produce inconsistent data under real-world farm conditions. This study introduces Dairy DigiD, a deep learning-based biometric classification framework that categorizes dairy cattle into four physiologically defineda groups-young, mature milking, pregnant, and dry cows-using high-resolution facial images.
View Article and Find Full Text PDFNPJ Biol Timing Sleep
September 2025
Healthy Living Spaces Lab, Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
The retinal photopigment melanopsin is also expressed in subcutaneous white adipose tissue (scWAT). Through melanopsin, light can modulate scWAT metabolism, but its impact on circadian phase is unclear. In vitro exposure of murine scWAT to bright light at different times over 24 h did not elicit phase shifts, unlike the response to corticosterone.
View Article and Find Full Text PDFBiomacromolecules
September 2025
Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, Stockholm 10044, Sweden.
Lignin, traditionally considered a low-value byproduct of the pulp and paper industry, has gained significant attention in recent years as a sustainable precursor for the development of functional materials. This paradigm shift is driven by recent studies exploring the structure-property-performance relationships of lignin-based functional materials, which have provided valuable insights for selective chemical functionalization or pretreatment of lignin. Furthermore, the use of complementary analytical techniques has helped to shed light into lignin's complex and heterogeneous structure, opening new avenues for chemical modification.
View Article and Find Full Text PDF