Phenotypic Selection in D. Don (Gentianaceae), an Alpine Biennial with Mixed Mating System.

Plants (Basel)

The Germplasm Bank of Wild Species, Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The transition from outcrossing to selfing is a common evolutionary trend in flowering plants, and floral traits change significantly with the evolution of selfing. Whether or not plant traits are subjected to selection remains an open question in species with mixed mating systems. We examined phenotypic selection in two populations of with different selfing rates. We found that the pollen-ovule ratio, seed size, plant height, spur length, and pollinator visitation rate in the population with the higher selfing rate were lower than those in the population with the lower selfing rate. Selfing provides reproductive assurance for populations when pollinator service is low, and the floral traits that are associated with selfing syndrome are evident in populations with a higher selfing rate but are subjected to weak selection in each of the two populations with different selfing rates. Directional selection for an early flowering time indicated that late blooming flowers could experience a risk of seed development in alpine environments, and for large plants, selection indicated that seed production could be limited by the available resources. The floral traits that are associated with pollinator attraction and specialization could be subjected to weak selection at the plant level as selfing evolves, and the selective pressures that are independent of pollinators might not change significantly; highlighting the selective biotic and abiotic pressures that shape the morphological traits of plant species and their independence from the mating system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9183009PMC
http://dx.doi.org/10.3390/plants11111488DOI Listing

Publication Analysis

Top Keywords

floral traits
12
selfing rate
12
selfing
10
phenotypic selection
8
mixed mating
8
mating system
8
selection populations
8
populations selfing
8
selfing rates
8
higher selfing
8

Similar Publications

Direct Effects of Polyploidization on Floral Scent.

J Chem Ecol

September 2025

Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.

Polyploidy is an important driver of the evolution and diversification of flowering plants. Several studies have shown that established polyploids differ from diploids in floral morphological traits and that polyploidization directly affects these traits. However, for floral scent, which is key to many plant-pollinator interactions, only a few studies have quantified differences between established cytotypes, and the direct effects of polyploidization on floral scent are not yet known.

View Article and Find Full Text PDF

Background And Aims: Since the Industrial Revolution, rising atmospheric CO₂, warming, and more frequent droughts have significantly impacted ecosystems. While the response of leaf functional traits to these climate change factors have been widely studied, reproductive traits remain relatively understudied, despite their key role in the diversification and distribution of flowering plants. Here, we investigated how elevated CO₂, warming, drought, and their interactions affect floral, leaf and seed traits in two model grassland species.

View Article and Find Full Text PDF

Premise: Floral pigments primarily serve to attract pollinators through color display and also contribute to protection against environmental stress. Although pigment composition can be plastically altered under stress, its impact on pollinator color perception remains poorly understood. Moricandia arvensis (Brassicaceae) exhibits seasonal floral dimorphism, with lilac spring flowers and white summer flowers.

View Article and Find Full Text PDF

Vernalization reveals distinct roles of FLOWERING LOCUS T homologs in floral transition of perennial Taraxacum koksaghyz.

Plant Sci

September 2025

Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Muenster, Germany. Electronic address:

Flowering is a key trait in most crops and may depend on cold exposure, a process known as vernalization, but the underlying regulatory mechanisms are poorly understood. Taraxacum koksaghyz is a rubber-producing dandelion of the family Asteraceae, which also includes other economically important crops such as chicory and lettuce. Most T.

View Article and Find Full Text PDF