98%
921
2 minutes
20
Multiple sclerosis is an autoimmune disease with a strong neuroinflammatory component that contributes to severe demyelination, neurodegeneration and lesions formation in white and grey matter of the spinal cord and brain. Increasing attention is being paid to the signaling of the biogenic amine histamine in the context of several pathological conditions. In multiple sclerosis, histamine regulates the differentiation of oligodendrocyte precursors, reduces demyelination, and improves the remyelination process. However, the concomitant activation of histamine H1-H4 receptors can sustain either damaging or favorable effects, depending on the specifically activated receptor subtype/s, the timing of receptor engagement, and the central versus peripheral target district. Conventional drug development has failed so far to identify curative drugs for multiple sclerosis, thus causing a severe delay in therapeutic options available to patients. In this perspective, drug repurposing offers an exciting and complementary alternative for rapidly approving some medicines already approved for other indications. In the present work, we have adopted a new network-medicine-based algorithm for drug repurposing called SAveRUNNER, for quantifying the interplay between multiple sclerosis-associated genes and drug targets in the human interactome. We have identified new histamine drug-disease associations and predicted off-label novel use of the histaminergic drugs amodiaquine, rupatadine, and diphenhydramine among others, for multiple sclerosis. Our work suggests that selected histamine-related molecules might get to the root causes of multiple sclerosis and emerge as new potential therapeutic strategies for the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181091 | PMC |
http://dx.doi.org/10.3390/ijms23116347 | DOI Listing |
Chem Biodivers
September 2025
Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, Laboratory of Anti-Allergy Functional Compounds, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
Autoimmune diseases (AIDs), defined by irregularities in immune system function, pose a substantial health challenge worldwide, impacting millions with persistent and frequently debilitating conditions. Conventional treatments, such as glucocorticoid-based immunosuppressive therapies, are associated with notable drawbacks and limitations. In response to these difficulties, recent scientific efforts have increasingly focused on natural compounds as potential therapeutic agents.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
November 2025
Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
Background And Objectives: Myelitis is a relatively common clinical entity for neurologists, with diverse underlying causes. The aim of this study was to describe the incidence of myelitis, its causes, clinical presentation, and factors predicting functional outcomes and relapses.
Methods: Using the Swedish National Patient Registry, we identified all adult patients in Stockholm County between 2008 and 2018 using International Classification of Diseases, 10th Edition (ICD-10) codes likely to include myelitis.
Neurol Neuroimmunol Neuroinflamm
November 2025
Departments of Neurology and Ophthalmology, NYU Grossman School of Medicine, NY; and.
Background And Objectives: While reductions in optical coherence tomography (OCT) pRNFL and ganglion cell-inner plexiform layer thicknesses have been shown to be associated with brain atrophy in adult-onset MS (AOMS) cohorts, the relationship between OCT and brain MRI measures is less established in pediatric-onset MS (POMS). Our aim was to examine the associations of OCT measures with volumetric MRI in a cohort of patients with POMS to determine whether OCT measures reflect CNS neurodegeneration in this patient population, as is seen in AOMS cohorts.
Methods: This was a cross-sectional study with retrospective ascertainment of patients with POMS evaluated at a single center with expertise in POMS and neuro-ophthalmology.
Clin Transplant
September 2025
Centro De Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.
ACS Chem Neurosci
September 2025
Department of Medical Biology, Faculty of Medicine, Bahçeşehir University, Istanbul 34353, Turkey.
IL-17A is a pro-inflammatory cytokine that significantly contributes to the pathogenesis of autoimmune diseases, including multiple sclerosis (MS). Previous studies have suggested that PARP-1 inhibitors can modulate IL-17A-mediated inflammation, prompting the investigation of Niraparib, an FDA-approved PARP-1 inhibitor, as a potential therapeutic agent for MS. In this study, we hypothesized that Niraparib could disrupt the interaction between IL-17A and its receptor, IL-17RA.
View Article and Find Full Text PDF