A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning models for prediction of co-occurrence of diabetes and cardiovascular diseases: a retrospective cohort study. | LitMetric

Machine learning models for prediction of co-occurrence of diabetes and cardiovascular diseases: a retrospective cohort study.

J Diabetes Metab Disord

Institute for Physical Activity and Nutrition, Deakin University, 221 Burwood Highway, Burwood, Melbourne, VIC 3125 Australia.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Diabetic mellitus (DM) and cardiovascular diseases (CVD) cause significant healthcare burden globally and often co-exists. Current approaches often fail to identify many people with co-occurrence of DM and CVD, leading to delay in healthcare seeking, increased complications and morbidity. In this paper, we aimed to develop and evaluate a two-stage machine learning (ML) model to predict the co-occurrence of DM and CVD.

Methods: We used the diabetes complications screening research initiative (DiScRi) dataset containing >200 variables from >2000 participants. In the first stage, we used two ML models (logistic regression and Evimp functions) implemented in multivariate adaptive regression splines model to infer the significant common risk factors for DM and CVD and applied the correlation matrix to reduce redundancy. In the second stage, we used classification and regression algorithm to develop our model. We evaluated the prediction models using prediction accuracy, sensitivity and specificity as performance metrics.

Results: Common risk factors for DM and CVD co-occurrence was family history of the diseases, gender, deep breathing heart rate change, lying to standing blood pressure change, HbA1c, HDL and TC\HDL ratio. The predictive model showed that the participants with HbA1c >6.45 and TC\HDL ratio > 5.5 were at risk of developing both diseases (97.9% probability). In contrast, participants with HbA1c >6.45 and TC\HDL ratio ≤ 5.5 were more likely to have only DM (84.5% probability) and those with HbA1c ≤5.45 and HDL >1.45 were likely to be healthy (82.4%. probability). Further, participants with HbA1c ≤5.45 and HDL <1.45 were at risk of only CVD (100% probability). The predictive accuracy of the ML model to detect co-occurrence of DM and CVD is 94.09%, sensitivity 93.5%, and specificity 95.8%.

Conclusions: Our ML model can significantly predict with high accuracy the co-occurrence of DM and CVD in people attending a screening program. This might help in early detection of patients with DM and CVD who could benefit from preventive treatment and reduce future healthcare burden.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167176PMC
http://dx.doi.org/10.1007/s40200-021-00968-zDOI Listing

Publication Analysis

Top Keywords

participants hba1c
12
machine learning
8
models prediction
8
cardiovascular diseases
8
common risk
8
risk factors
8
factors cvd
8
hba1c >645
8
>645 tc\hdl
8
hba1c ≤545
8

Similar Publications