This paper presents a comprehensive and evidence-based cyber-risk assessment approach specifically designed for Medical Cyber Physical Systems (MCPS)- and Internet-of-Medical Devices (IoMT)-based collaborative digital healthcare systems, which leverage Federated Identity Management (FIM) solutions to manage user identities within this complex environment. While these systems offer advantages like easy data collection and improved collaboration, they also introduce new security challenges due to the interconnected nature of devices and data, as well as vulnerabilities within the FIM and the lack of robust security in IoMT devices. To proactively safeguard the digital healthcare system from cyber attacks with potentially life-threatening consequences, a comprehensive and evidence-based cyber-risk assessment is crucial for mitigating these risks.
View Article and Find Full Text PDFFront Public Health
April 2023
Background: Several research studies have demonstrated the potential of mobile health apps in supporting health management. However, the design and development process of these apps are rarely presented.
Objective: We present the design and development of a smartphone-based lifestyle app integrating a wearable device for hypertension management.
Social media platforms such as (Twitter, Facebook, and Weibo) are being increasingly embraced by individuals, groups, and organizations as a valuable source of information. This social media generated information comes in the form of tweets or posts, and normally characterized as short text, huge, sparse, and low density. Since many real-world applications need semantic interpretation of such short texts, research in Short Text Topic Modeling (STTM) has recently gained a lot of interest to reveal unique and cohesive latent topics.
View Article and Find Full Text PDFBackground: Diabetic mellitus (DM) and cardiovascular diseases (CVD) cause significant healthcare burden globally and often co-exists. Current approaches often fail to identify many people with co-occurrence of DM and CVD, leading to delay in healthcare seeking, increased complications and morbidity. In this paper, we aimed to develop and evaluate a two-stage machine learning (ML) model to predict the co-occurrence of DM and CVD.
View Article and Find Full Text PDFFront Cardiovasc Med
March 2022
Background: Hypertension is the most common modifiable risk factor for cardiovascular diseases in South Asia. Machine learning (ML) models have been shown to outperform clinical risk predictions compared to statistical methods, but studies using ML to predict hypertension at the population level are lacking. This study used ML approaches in a dataset of three South Asian countries to predict hypertension and its associated factors and compared the model's performances.
View Article and Find Full Text PDFTher Adv Endocrinol Metab
March 2022
Background: Cardiac autonomic neuropathy (CAN) is a diabetes-related complication with increasing prevalence and remains challenging to detect in clinical settings. Machine learning (ML) approaches have the potential to predict CAN using clinical data. In this study, we aimed to develop and evaluate the performance of an ML model to predict early CAN occurrence in patients with diabetes.
View Article and Find Full Text PDFSensors (Basel)
February 2021
Malicious software ("malware") has become one of the serious cybersecurity issues in Android ecosystem. Given the fast evolution of Android malware releases, it is practically not feasible to manually detect malware apps in the Android ecosystem. As a result, machine learning has become a fledgling approach for malware detection.
View Article and Find Full Text PDFSensors (Basel)
August 2019
Wireless multimedia sensor networks (WMSNs) are capable of collecting multimedia events, such as traffic accidents and wildlife tracking, as well as scalar data. As a result, WMSNs are receiving a great deal of attention both from industry and academic communities. However, multimedia applications tend to generate high volume network traffic, which results in very high energy consumption.
View Article and Find Full Text PDFComput Methods Programs Biomed
July 2018
Background And Objective: Early diagnosis of cardiac autonomic neuropathy (CAN) is critical for reversing or decreasing its progression and prevent complications. Diagnostic accuracy or precision is one of the core requirements of CAN detection. As the standard Ewing battery tests suffer from a number of shortcomings, research in automating and improving the early detection of CAN has recently received serious attention in identifying additional clinical variables and designing advanced ensembles of classifiers to improve the accuracy or precision of CAN diagnostics.
View Article and Find Full Text PDFAlthough Radio Frequency Identification (RFID) is poised to displace barcodes, security vulnerabilities pose serious challenges for global adoption of the RFID technology. Specifically, RFID tags are prone to basic cloning and counterfeiting security attacks. A successful cloning of the RFID tags in many commercial applications can lead to many serious problems such as financial losses, brand damage, safety and health of the public.
View Article and Find Full Text PDFThe success of a Wireless Sensor Network (WSN) deployment strongly depends on the quality of service (QoS) it provides regarding issues such as data accuracy, data aggregation delays and network lifetime maximisation. This is especially challenging in data fusion mechanisms, where a small fraction of low quality data in the fusion input may negatively impact the overall fusion result. In this paper, we present a fuzzy-based data fusion approach for WSN with the aim of increasing the QoS whilst reducing the energy consumption of the sensor network.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2016
Blood biochemistry attributes form an important class of tests, routinely collected several times per year for many patients with diabetes. The objective of this study is to investigate the role of blood biochemistry for improving the predictive accuracy of the diagnosis of cardiac autonomic neuropathy (CAN) progression. Blood biochemistry contributes to CAN, and so it is a causative factor that can provide additional power for the diagnosis of CAN especially in the absence of a complete set of Ewing tests.
View Article and Find Full Text PDFComput Biol Med
October 2013
Cardiovascular autonomic neuropathy (CAN) is a serious and well known complication of diabetes. Previous articles circumvented the problem of missing values in CAN data by deleting all records and fields with missing values and applying classifiers trained on different sets of features that were complete. Most of them also added alternative features to compensate for the deleted ones.
View Article and Find Full Text PDFObjective: This article addresses the problem of determining optimal sequences of tests for the clinical assessment of cardiac autonomic neuropathy (CAN). We investigate the accuracy of using only one of the recommended Ewing tests to classify CAN and the additional accuracy obtained by adding the remaining tests of the Ewing battery. This is important as not all five Ewing tests can always be applied in each situation in practice.
View Article and Find Full Text PDFSensors (Basel)
August 2012
People with special medical monitoring needs can, these days, be sent home and remotely monitored through the use of data logging medical sensors and a transmission base-station. While this can improve quality of life by allowing the patient to spend most of their time at home, most current technologies rely on hardwired landline technology or expensive mobile data transmissions to transmit data to a medical facility. The aim of this paper is to investigate and develop an approach to increase the freedom of a monitored patient and decrease costs by utilising mobile technologies and SMS messaging to transmit data from patient to medico.
View Article and Find Full Text PDFRadio frequency identification (RFID) systems are emerging as the primary object identification mechanism, especially in supply chain management. However, RFID naturally generates a large amount of duplicate readings. Removing these duplicates from the RFID data stream is paramount as it does not contribute new information to the system and wastes system resources.
View Article and Find Full Text PDFSensors (Basel)
July 2012
Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system.
View Article and Find Full Text PDF