98%
921
2 minutes
20
The discovery of bacterial-derived Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has revolutionized genome engineering and gene therapy due to its wide range of applications. One of the major challenging issues in CRISPR/Cas system is the lack of an efficient, safe, and clinically suitable delivery of the system's components into target cells. Here, we describe the development of polyethylenimine coated-bovine serum albumin nanoparticles (BSA-PEI NPs) for efficient delivery of CRISPR/Cas9 system in both DNA (px458 plasmid) and ribonucleoprotein (RNP) forms into MDA-MB-231 human breast cancer cell line. Our data showed that synthesized BSA-PEI (BP) NPs delivered plasmid px458 at concentrations of 0.15, 0.25, and 0.35 µg/µl with efficiencies of approximately 29.7, 54.8, and 84.1% into MDA-MB-231 cells, respectively. Our study demonstrated that Cas9/sgRNA RNP complex efficiently (~ 92.6%) delivered by BSA-PEI NPs into the same cells. Analysis of toxicity and biocompatibility of synthesized NPs on human red blood cells, MDA-MB-231 cells, and mice showed that the selected concentration (28 µg/µl) of BSA-PEI NPs for transfection had no remarkable toxicity effects. Thus, obtained results suggest BSA-PEI NPs as one of the most promising carrier for delivering CRISPR/Cas9 to target cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171472 | PMC |
http://dx.doi.org/10.1007/s12033-022-00514-z | DOI Listing |
Mol Biotechnol
December 2022
Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
The discovery of bacterial-derived Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has revolutionized genome engineering and gene therapy due to its wide range of applications. One of the major challenging issues in CRISPR/Cas system is the lack of an efficient, safe, and clinically suitable delivery of the system's components into target cells. Here, we describe the development of polyethylenimine coated-bovine serum albumin nanoparticles (BSA-PEI NPs) for efficient delivery of CRISPR/Cas9 system in both DNA (px458 plasmid) and ribonucleoprotein (RNP) forms into MDA-MB-231 human breast cancer cell line.
View Article and Find Full Text PDFMacromol Biosci
May 2017
Institute of Medical Science and Technology, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan.
How to overcome the low accumulation of chemotherapeutic agent in tumor tissue and exhibit multitherapeutics remains an ongoing challenge for cancer treatment. Here, a simple method is demonstrated that used to prepare prostate-specific membrane antigen antibody (PSMA )-conjugated fluorescent bovine serum albumin (BSA)-branched polyethylenimine layer-by-layer nanoparticles (BSA-PEI NPs) for co-delivery of docetaxel (DTX) and p44/42 mitogen-activated protein kinase (MAPK) small interfering RNA (p44/42 MAPK siRNA) as synergistic and selective inhibition of cancer cell proliferation platform. The results show the levels of α-tubulin and p44/42 MAPK in CWR22R cells are significantly reduced after treatment with PSMA -conjugated DTX/BSA-PEI /siRNA NPs.
View Article and Find Full Text PDF