Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nonsense mutations or premature termination codons (PTCs) comprise ∼11% of all genetic lesions, which result in over 7,000 distinct genetic diseases. Due to their outsized impact on human health, considerable effort has been made to find therapies for nonsense-associated diseases. Suppressor tRNAs have long been identified as a possible therapeutic for nonsense-associated diseases; however, their ability to inhibit nonsense-mediated mRNA decay (NMD) and support significant protein translation from endogenous transcripts has not been determined in mammalian cells. Here, we investigated the ability of anticodon edited (ACE)-tRNAs to suppress cystic fibrosis (CF) causing PTCs in the cystic fibrosis transmembrane regulator (CFTR) gene in gene-edited immortalized human bronchial epithelial (16HBEge) cells. Delivery of ACE-tRNAs to 16HBEge cells harboring three common CF mutations G542XUGA-, R1162XUGA-, and W1282XUGA-CFTR PTCs significantly inhibited NMD and rescued endogenous mRNA expression. Furthermore, delivery of our highly active leucine-encoding ACE-tRNA resulted in rescue of W1282X-CFTR channel function to levels that significantly exceed the necessary CFTR channel function for therapeutic relevance. This study establishes the ACE-tRNA approach as a potential standalone therapeutic for nonsense-associated diseases due to its ability to rescue both mRNA and full-length protein expression from PTC-containing endogenous genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126842 | PMC |
http://dx.doi.org/10.1016/j.omtn.2022.04.033 | DOI Listing |